EFFECTIVENESS OF RMT-BASED LEARNING TRAJECTORIES TO SUPPORT RELATIONAL UNDERSTANDING

Bernika Indrialis Ifana(1*), Nyimas Aisyah(2), Ely Susanti(3),

(1) Universitas Sriwijaya
(2) Universitas Sriwijaya
(3) Universitas Sriwijaya
(*) Corresponding Author


Abstract


Straight line equations are one of the mathematical materials that are often difficult to understand. This difficulty is due to a teaching approach that often emphasizes memorizing formulas without a deep understanding, as well as a lack of reasoning and problem-solving exercises. This study aims to design a learning trajectory of straight line equations using the Rigorous Mathematical Thinking (RMT) approach and its effectiveness on students' relational understanding. The research method used is design research, which focuses on designing a learning trajectory and consists of three stages: preliminary analysis, experiment, and retrospective which are carried out in two cycles. The subjects of this study were 8th grade students of Palembang State Junior High School, with 32 students as participants in the pilot experiment and 36 students as participants in the teaching experiment, which were selected by purposive sampling. Data is collected through observation, written tests, and interviews. The data from the HLT design will be analyzed qualitatively and  the results of the pre-test and post-test will be analyzed quantitatively. The results of this study produce a learning trajectory consisting of two main activities i.e Solving problems related to line equations that go through two points, and perpendicular line equations. The learning trajectory developed is able to support students' relational understanding, where in the learning process, students are directed to utilize the various knowledge they have, determine the most effective and efficient strategies, provide detailed solutions, and believe in the truth of the answers they use in solving problems. In addition, pre and post test results, there is an increase in relational understanding, it can be concluded that the RMT-based learning trajectory is effective for improving students' relational understanding of students in learning straight line equation material.

Persamaan garis lurus merupakan salah satu materi matematika yang sering kali sulit dipahami. Kesulitan ini disebabkan oleh pendekatan pengajaran yang sering kali menekankan pada hafalan rumus tanpa pemahaman yang mendalam, serta kurangnya latihan penalaran dan pemecahan masalah. Penelitian ini bertujuan untuk merancang lintasan pembelajaran persamaan garis lurus menggunakan pendekatan Rigorous Mathematical Thinking (RMT) serta efektivitasnya terhadap pemahaman relasional siswa. Metode penelitian yang digunakan adalah penelitian desain, yang berfokus pada perancangan lintasan pembelajaran dan terdiri dari tiga tahap: analisis pendahuluan, eksperimen, dan retrospektif yang dilakukan dalam dua siklus. Subjek penelitian ini adalah siswa kelas 8 SMP Negeri Palembang, dengan 32 siswa sebagai peserta pilot eksperimen dan 36 siswa sebagai peserta eksperimen pengajaran, yang dipilih secara purposive sampling. Data dikumpulkan melalui observasi, tes tertulis, dan wawancara. Data hasil rancangan HLT akan dianalisis secara kualitatif dan hasil pre-test dan post-test akan dianalisis secara kuantitatif. Hasil penelitian ini menghasilkan lintasan pembelajaran yang terdiri dari dua kegiatan utama yaitu Menyelesaikan masalah yang berkaitan dengan persamaan garis yang melalui dua titik dan persamaan garis yang tegak lurus. Lintasan pembelajaran yang dikembangkan ini mampu mendukung pemahaman relasional siswa, dimana dalam proses pembelajaran siswa diarahkan untuk memanfaatkan berbagai pengetahuan yang dimiliki, menentukan strategi yang paling efektif dan efisien, memberikan solusi yang detail, serta meyakini kebenaran jawaban yang mereka gunakan dalam menyelesaikan masalah. Selain itu, hasil yang didapatkan adalah hasil pre-test dan post-test terdapat peningkatan pemahaman relasional, maka dapat disimpulkan lintasan belajar berbasis RMT efektif untuk meningkatkan pemahaman relasional siswa dalam pembelajaran materi persamaan garis lurus.

 


Keywords


Learning Design; Relational Understanding; Rigorous Mathematical Thinking; Straight Line Equations

Full Text:

PDF

References


Amalia, Y. R., & Hidayati, K. (2024). International Journal of Multicultural and Multireligious Understanding The Influence of RMT-Based Learning on Concept Understanding Ability , Spatial Reasoning and Self Regulated Learning of Junior High School Students. 11(9), 187–199. https://doi.org/http://dx.doi.org/10.18415/ijmmu.v11i9.6159

Amir, M. F., Wardana, M. D. K., & Usfuriah, D. (2021). Visual and Symbolic Representation Forming: a Case of Relational Understanding on Elementary Student. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(4), 2014. https://doi.org/10.24127/ajpm.v10i4.4361

Ayu, M. (2019). Desain Perangkat Pembelajaran Relasi dan Fungsi Berbasis Rigorous Mathematical TThinking (RMT) Pada Siswa Kelas VIII SMPN 2 Polopo (IAIN Palopo). IAIN Palopo. Retrieved from https://repository.iainpalopo.ac.id/id/eprint/104/

Devi, M. P. S. (2018). Pemahaman Konsep Persamaan Garis Lurus Ditinjau Dari Gaya Kognitif Siswa Kelas VIII (Universitas Muhammadiyah Surakarta). Universitas Muhammadiyah Surakarta. Retrieved from https://core.ac.uk/download/pdf/160270333.pdf

Firmasari, S., Herman, T., Firdaus, E. F., Swadaya, U., Djati, G., Indonesia, U. P., & Peradaban, U. (2022). K r e a n o. 13(2), 246–256. https://doi.org/https://doi.org/10.15294/kreano.v13i2.34536

Firmasari, S., & Juandi, D. (2021). Berpikir Matematis Rigor: Kontribusi Pada Pengembangan Pengetahuan Metakognitif-Self Assessment Mahasiswa. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(2), 1222. https://doi.org/https://doi.org/10.24127/ajpm.v10i2.3430

Gravemeijer, K., & Eerde, D. van. (2009). Design Research as a Means for Building a Knowledge Base for Teachers and Teaching in Mathematics Education. The Elementary School Journal, 109 (5), 510–524. https://doi.org/https://doi.org/10.1086/596999

Hakim, A., & Aji, I. (2022). Analisis Kesalahan Peserta Didik Kelas VIII Dalam Menyelesaikan Soal Materi Persamaan Garis Lurus. JPMI: Jurnal Pembelajaran Matematika Inovatif, 5(3), 877–884. https://doi.org/10.22460/jpmi.v5i3.877-884

Hayati, H. S., Astuti, P., & Febrian, F. (2022). Electronic Student Worksheets Based on Rigorous Mathematical Thinking for Sequence and Series Materials in Senior High School. Jurnal Gantang, 7(2), 185–197. https://doi.org/10.31629/jg.v7i2.5331

Hidaiyah, R., Sukoriyanto, & Slamet. (2023). Pemahaman matematis siswa dalam menyelesaikan masalah matematika dari perspektif teori pemahaman Skemp. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(2), 2296–2305. https://doi.org/https://doi.org/10.24127/ajpm.v12i2.6510

Hidayat, D., Kohar Ahmad, W., Prihartiwi Nina, R., Mubarok, H., & Yohannes, A. (2021). Design of Learning Activities using Rigorous Mathematical Thinking (RMT) Approach in Application of Derivatives. IJORER : International Journal of Recent Educational Research, 2(1), 111–120. https://doi.org/10.46245/ijorer.v2i1.75

Ibrahim, I. (2020). Desain Penyajian Materi Persamaan Garis Lurus Di Smp Berorientasi Keterampilan Berpikir Tingkat Tinggi. Media Pendidikan Matematika, 8(2), 1. https://doi.org/10.33394/mpm.v8i2.3145

Mefiana, S. A., & Juandi, D. (2023). Refractive Thinking in Solving Mathematical Problems in Indonesia: A Systematic Literature Review. Mathline: Jurnal Matematika Dan Pendidikan Matematika, 8(2), 473–488. https://doi.org/http://doi.org/10.31943/mathline.v8i2.409

Nuraisyah, R. N., Pratiwi, W. D., & Aisyah, N. (2023). Abstract relational thinking ability of high school students through the rigorous mathematical thinking (RMT) approach to algebra topics. Jurnal Pendidikan Matematika RAFA, 8(2), 1–12. https://doi.org/10.19109/jpmrafa.v9i1.10091

Plomp, T., & Nieveen, N. (2006). Educational Design Research Educational Design Research. In Netherlands Institute for Curriculum Development: SLO.

Pratiwi, W. D., Hauda, N., Kurniadi, E., Araiku, J., & Astuti, P. (2022). Qualitative Thinking Level for Geometry Learning Based on Rigorous Mathematical Thinking (Rmt) Approach. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(3), 2370. https://doi.org/10.24127/ajpm.v11i3.5332

Rachmawati, I., Subanti, S., & Usodo, B. (2023). Description of Junior High School Students’ Mathematical Understanding According to Skemp Theory in terms of Rational Personality Types. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(2), 417. https://doi.org/10.31764/jtam.v7i2.13179

Samosir, C. M., Dahlan, J. A., Herman, T., & Prabawanto, S. (2023). Exploring Students’ Mathematical Understanding according to Skemp’s Theory in Solving Statistical Problems. Jurnal Didaktik Matematika, 10(2), 219–236. https://doi.org/10.24815/jdm.v10i2.32598

Syafri, F. S., Susanta, A., & Koto, I. (2024). Development of a rigorous mathematical thinking- based textbook in the house of worship context to enhance conceptual understanding. Al-Jabar: Jurnal Pendidikan Matematika, 15(02), 521–534. https://doi.org/https://doi.org/10.24042/ajpm.v15i2.23290

Tashtoush, M. A., & Wardat, Y. (2023). Conceptual Understanding for Systems of Linear Equations: Difficulties and Challenges. Information Sciences Letters, 12(12), 2491–2503. https://doi.org/10.18576/isl/121210

Utomo, D. P., & Huda, M. (2020). Pemahaman Relasional Analisis Proses Pembuktian Menggunakan Induksi Matematika. Yogyakarta: CV. Bildung Nusantara.




DOI: http://dx.doi.org/10.24127/ajpm.v14i2.10895

Refbacks

  • There are currently no refbacks.