EXPLORING STUDENTS’ MATHEMATICAL PROBLEM-SOLVING ABILITY ON SET TOPICS BASED ON SELF CONFIDENCE

Ali Shodikin1*, Yurizka Melia Sari2, Alvenna Nursyafira3

1*,2 Universitas Negeri Surabaya, Surabaya, Indonesia
3 Universitas Islam Darul ‘Ulum, Lamongan, Indonesia

*Corresponding author. Jl. Raya Kampus Unesa Lidah Wetan 60213, Kota Surabaya, Jawa Timur, Indonesia
E-mail: alishodikin@unesa.ac.id1*
yurizkameliyasari@unesa.ac.id2
alvennanur@gmail.com3

Received 31 October 2022; Received in revised form 31 March 2023; Accepted 15 June 2023

Abstract

Students’ problem-solving abilities are influenced by their self-confidence in learning mathematics. This study intends to investigate junior high school students’ mathematics problem-solving abilities in terms of their self-confidence in the set content. Descriptive qualitative research methodology is employed. This research involved 32 students in 7th grade at SMP Negeri 2 Sukodadi, Lamongan. To focus on data analysis, 3 students were selected representing different levels of self-confidence, namely high, medium and low. Subject taking is based on the results of the scores on the self-confidence questionnaire that has been given. Questionnaires on self-confidence, tests of mathematical problem-solving abilities, and interview guidelines were the instruments employed. Based on the data analysis, it was found that there is a close relationship between self-confidence and mathematical problem-solving ability, that is, the higher the level of student self-confidence, the better the ability to solve mathematical problems. Conversely, if students’ self-confidence is lower, their mathematical problem-solving abilities will also be lower. This study emphasizes the importance of students’ self-confidence to be grown in learning to support their mathematical problem-solving abilities.

Keywords: Set; self confidence; mathematical problem-solving

Abstrak

Kata kunci: Himpunan; kepercayaan diri, pemecahan masalah matematis

This is an open access article under the Creative Commons Attribution 4.0 International License
INTRODUCTION

Mathematics education is critical for everyone. Because mathematics education helps everyone to improve problem-solving skills and think logically, critically, and systematically (Ramdan et al., 2018; Shodikin, 2016). Mathematics has tremendous potential to play a strategic role in nurturing talent in this challenging era of globalization. Therefore, considering the ability or potential of mathematics education, students who are proficient in mathematics and have succeeded in developing skills will be able to think critically, logically, actively, and creatively about the changes and developments of the times (Mutmainnah et al., 2021; Nahdi et al., 2021). According to Sariningsih & Purwasih (2017), mathematics education can motivate people always to progress, as evidenced by the advancement of modern technology. Therefore, being a proficient person in mathematics is very important for everyone.

Mathematical problem solving ability is crucial for both learning and teaching mathematics (Al Ayyubi et al., 2018; Juanda et al., 2014; Millah & Shodikin, 2021; Purnama & Mertika, 2018; Shodikin et al., 2021; Wulandari et al., 2021). Some experts define problem-solving aptitude as the capacity to anticipate the procedures necessary to resolve an issue using knowledge already understood (Annisa et al., 2021; Aizah et al., 2020; Bernard et al., 2018). The ability to solve mathematical issues, on the other hand, is defined as mathematical problem-solving skill by identifying known factors and using them to determine formulas or strategies to reach solutions (Novitasari & Shodikin, 2020; Nurwahid & Shodikin, 2021; Sari et al., 2019).

The set topic is one of the branches of mathematics that must be studied at the SMP/MTS level. A set is a collection of objects or objects whose members can be clearly defined and determined (Lusiana, 2017; Purwanto & Rizki, 2015). The set is also defined as a collection of measurable objects that members can identify in the set (Aminah et al., 2018; Dwidarti et al., 2019). This set of materials can demand students in mathematical problem-solving skills because the completion process requires identification, settlement strategies, and completion results (Hidayat & Pujiasstuti, 2019; Rahayu & Pujiasstuti, 2018).

Students need self-confidence when solving problems. Self-confidence is an attribute of human nature that plays an important role in achieving a person's potential or skill (Diniyah et al., 2018; Dewi & Minarti, 2018; Maulidyia et al., 2021; Nurfitria & Nindiasari, 2018; Rini et al., 2020; Sipayung et al., 2021; Ulfa et al., 2019). According to some experts, self-confidence is an individual's belief in his ability to solve problems according to the best strategy and plan (Khoirunnisa & Malasari, 2021; Nur et al., 2021; Purnama & Mertika, 2018). Confident people can solve problems using the best strategies, and confident people can achieve certain goals according to plan (Hendriana et al., 2018; Haeruman et al., 2017; Rustan & Bahru, 2018). It shows that self-confidence can help students solve problems and support their motivation and success in mathematics.

As explained above, mathematical problem-solving skills are critical and must be held by pupils (Mawaddah & Maryanti, 2016; Novitasari & Shodikin, 2020; Sumartini, 2016). Additionally, having confidence in oneself is another
element that aids students in solving mathematical issues. Therefore, teachers need to know how well and confident their students are in solving mathematical problems so that teachers can apply more interesting and relevant learning models and strategies. As a result, students will be very confident in solving math problems and easily understand what has been learned.

METHOD

This study employed a descriptive technique to investigate an overview of students' mathematical problem-solving ability. Descriptive qualitative research methodology has been used. The researcher chose this method because it aims to explore solving students' mathematical problems in terms of their self-confidence.

This research was conducted at SMP Negeri 2 Sukodadi, East Java. The subject of this study involved 32 students from 7th grades, and 3 students were selected for presentation who represented the subject based on differences in their level of confidence.

This research phase is divided into three parts: planning, implementation, and reporting (Pitriyani et al., 2018). The initial phase of research is planning, and the researcher prepares all research tools, including confidence questionnaires, questions to test math problem-solving skills, and interview tools. Then the second stage, namely implementation, students were given a self-confidence questionnaire to fill out before being given a mathematics problem-solving ability test. The third stage is reporting; the researcher analyzes the data based on the guidelines that have been compiled, discusses and compares it based on supporting theories and research, and compiles it in the form of articles.

The instrument employed in this study was a self-confidence questionnaire with 26 items organized according to variable indicators. At the same time, the mathematical problem-fixing cap potential check is organized within the shape of an outline with two questions. Such tests are used to assess pupils' capacity for handling mathematical issues. Before the questionnaires and test questions were distributed to students, the two instruments were consulted with the supervisor first so that the instruments had content validity.

Collecting data is to determine the level of self-confidence by distributing questionnaires (Nurafni et al., 2019). The form of the scale used is a Likert scale, with four alternative answers consisting of positive questions and negative questions. Positive questions support the object, while negative ones do not. The scoring criteria for the questionnaires are self-confidence based on a Likert scale, as shown in Table 1.

<table>
<thead>
<tr>
<th>Answer Options</th>
<th>Positive Questions</th>
<th>Negative Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL (Always)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SR (Often)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ever (P)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Never (TP)</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Test results were used to obtain information about students aptitude for math issues (Islamiah et al., 2018). The evaluation criteria for each measure of a student's math problem-solving are given in Table 2 below (Mawaddah & Anisah, 2015).
Table 2. Scoring guidelines for student mathematical problem solving

<table>
<thead>
<tr>
<th>Aspects assessed</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the problem</td>
<td>0</td>
<td>Doesn't state the questions or what is known.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Indicate what is understood without specifying the request, or the opposite.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>State what is understood and what's requested; however, it isn't always precise</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Correctly describe what is known and what is asked.</td>
</tr>
<tr>
<td>Planning solutions</td>
<td>0</td>
<td>No plans at all for solving the problem.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>It plans a solution based on the problem, but it's not entirely correct.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Plan your decisions well.</td>
</tr>
<tr>
<td>Implement the plan</td>
<td>0</td>
<td>No answer at all.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Write down the answers and execute the plan, but the answers are incorrect or only part of the answers are correct.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Write down half or most of the correct answers to implement the plan.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Execute the plan by writing down your answers completely and accurately.</td>
</tr>
<tr>
<td>Interpreting the results obtained</td>
<td>0</td>
<td>There are no comments written.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Interpretation of the results obtained leads to conclusions but is not entirely accurate.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Interpret the results obtained by drawing appropriate conclusions.</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

This is a descriptive and qualitative research approach. Students from SMP Negeri 2 Sukodadi in grades VII participated in this study. The total number of pupils in the class is 32. First, the researcher provided the students a questionnaire on their self-confidence before asking them two questions regarding their ability to solve mathematical problems. It took 120 minutes to complete the test.

The data that have been obtained is processed and analyzed by researchers. Furthermore, the researchers took as many as three subjects. The subject was chosen based on data analysis performed by the researcher; results on self-confidence and mathematical problem-solving skill tests are shown in Table 3.

Table 3. Score self confidence and student mathematical problem solving

<table>
<thead>
<tr>
<th>No</th>
<th>Subject</th>
<th>Self Confidence</th>
<th>Mathematical Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ideal Score</td>
<td>Total Score</td>
</tr>
<tr>
<td>1</td>
<td>S-1</td>
<td>104</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>S-2</td>
<td>104</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>S-3</td>
<td>104</td>
<td>56</td>
</tr>
</tbody>
</table>

Note: S-1: subject 1, S-2: subject 2, S-3: subject 3

According to Table 3, the analysis of the score illustrates that students with high levels of self-confidence are better at solving mathematical problems, but students with low levels of self-confidence are not. Furthermore, the
analytical results reveal that self-confidence influences mathematical problem-solving ability.

The higher a student’s self-confidence, the better he or she solves math problems and vice versa. The confidence variable includes aspects that can be used to measure students’ ability to solve mathematical problems (Noviyana et al., 2019). Self-confidence and the capacity to answer problems in mathematics offer pupils a good perspective toward other talents, according to Hendriana et al., (2014), who conducted a study that found a positive association between self-confidence and mathematical comprehension.

The following are some of the findings of a mathematical problem-solving ability test of pupils with varying levels of self-confidence. Figures 1, 2, and 3 show high, medium, and low values for the set material.

Figure 1. The student answer S-1

Figure 1 shows the response of students who have high level of self-confidence in the assigned content. As seen in the image, the student can effectively answer the problem of mathematical problem-solving skills. Furthermore, students can comprehend the challenges provided in the problem by writing down what is known and what is being requested, and students can successfully complete the completion procedures. It is because 1) students are secure in their skills to learn the content, 2) students can make decisions on their own, and 3) students are willing to confront obstacles in problem solving.

Figure 2. The student answer S-2

Figure 2 depicts how students responded in the set material with moderate self-confidence. The image shows that the student must be able to tackle the problem of mathematical problem-solving abilities well. The student’s answer is not quite correct; while pupils can write down what they know and what is requested, they are less accurate in completing the completion stages. It is because 1) students are doubtful of their abilities in the assigned content, 2) students are still unsure of the formula to utilize, and 3) students are still confused between the intersection symbol and the combination, causing them to input incorrect numbers.

Figure 3. The student answer S-3
Figure 3 depicts the answers of students who were unsure about the assigned content. The image shows that the student did not answer the challenge of mathematical problem-solving abilities well. Furthermore, it can be observed that the student's answer is not exactly correct; while children can write down what they know and what is requested, they are less accurate in completing the finishing stages. It is because 1) students are unsure of their skills in the assigned content, 2) students are unable to act independently to answer issues, 3) students do not know what formula to use, and 4) students find it difficult to work on the questions.

According to the preceding summary of the examined data, self-confidence and mathematical problem solving skills are tightly associated. This is consistent with the findings of Hendriana's study, which revealed a strong relationship between self-confidence and pupils' mathematical problem-solving ability (Hendriana et al., 2018). Moreover, these relationships are mutually supportive and mutually beneficial. Irhamna et al., (2020) shown that self-confidence contributes to mathematical problem solving abilities concurrently and partially. According to Ramdan et al., (2018), there is a substantial positive association between self-confidence and mathematical problem-solving ability.

Another correlation is that the stronger a student's degree of self-confidence, the better his or her ability to answer arithmetic problems. Fadillah & Ardiawan (2021) also demonstrate that pupils with high levels of self-confidence outperform those with moderate and low levels of self-confidence in mathematical problem solving.

CONCLUSION AND SUGGESTION

Based on the data analysis and discussion, there is a very close positive association between self-confidence and the capacity to solve mathematical problems. In other words, confidence is a factor that may be used to assess mathematical problem-solving skill. The more self-assured a pupil is, the greater his or her ability to answer arithmetic problems. In contrast, the lower a student's degree of confidence, the poorer his or her ability to answer arithmetic problems.

This study has implications in that it is vital to enhance students' confidence in solving mathematical issues in order to improve their problem-solving skills. Based on the findings of this study, educators should work to boost students' self-confidence in order to help their mathematical problem-solving abilities improve. The instructor must foster closeness and confidence in kids who have poor self-esteem. This proximity may be achieved by motivated activities, scaffolding, and supplementary tasks that foster mathematical confidence.

According to Piaget's stages of cognitive development, this research is still restricted to junior high school students who have reached the formal operational stage. As a result, additional research involving subjects at various cognitive stages is needed to ensure that the findings hold true for other stages of cognitive development.

REFERENCES

Haeruman, L. D., Rahayu, W., & Ambarwati, L. (2017). Pengaruh model discovery learning terhadap peningkatan kemampuan berpikir kritis matematis dan self-confidence ditinjau dari kemampuan awal matematis siswa SMA di Bogor Timur. *JPPM (Jurnal Penelitian dan Pembelajaran Matematika)*, 10(2), 157-168.

