BAGAIMANA MAHASISWA MENGGUNAKAN PETA KARNAUGH DALAM MEMINIMASI FUNGSI BOOLEAN?
(1) Universitas Negeri Jakarta
(2) Universitas Negeri Jakarta
(3) Universitas Negeri Jakarta
(*) Corresponding Author
Abstract
Sejauh ini belum banyak penelitian pada topik minimisasi Fungsi Boolean. Penelitian studi kasus ini bertujuan untuk menganalisis performa mahasiswa dalam menggunakan peta Karnaugh dalam menyelesaikan permasalahan minimisasi fungsi Boolean. Sebanyak 42 mahasiswa dari program studi Pendidikan matematika di salah satu perguruan tinggi di Jakarta dipilih secara convenience sebagai partisipan dalam penelitian ini. Pengumpulan data dilakukan dengan administrasi tes. Analisis artefak atau lembar jawaban partisipan dilakukan untuk melihat ketepatan jawaban, pembuatan diagram, dan proses pengelompokkan yang dibuat. Berdasarkan hasil analisis tersebut, hanya sekitar 26% partisipan yang dapat meminimisasi fungsi Boolean dengan tepat. Selain itu, ditemukan bahwa faktor pendukung dan penghambat keberhasilan partisipan dalam menyelesaikan permasalahan minimasi fungsi Boolean dengan menggunakan Karnaugh Map adalah bergantung pada ketepatan penyusunan diagram dan proses pengelompokkan. Penyusunan diagram yang tepat ternyata belum tentu mendukung proses pengelompokkan yang tepat, akan tetapi pengelompokkan yang tepat didasari diagram yang tepat. Pembelajaran pada topik ini perlu memperhatikan factor-faktor pendukung dan penghambat ini agar kesulitan mahasiswa dapat diminimalisir.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Al-Sheeb, B. A., Hamouda, A. M., & Abdella, G. M. (2019). Modeling of student academic achievement in engineering education using cognitive and non-cognitive factors. Journal of Applied Research in Higher Education, 11(2), 178–198. https://doi.org/10.1108/JARHE-10-2017-0120
Aziz, E. (2020). Design simulation system to simplifying Boolean Equation by using Karnaugh Map. AL-Rafidain Journal of Computer Sciences and Mathematics, 14(1), 113–131. https://doi.org/10.33899/csmj.2020.164680
Aziz, T. A. (2021). Eksplorasi justifikasi dan rasionalisasi mahasiswa dalam konsep teori graf. Jurnal Pendidikan Matematika Raflesia, 6(2), 40–54. https://doi.org/10.33449/jpmr.v6i2.16526
Aziz, T. A., & Kurniasih, M. D. (2019). External Representation Flexibility of Domain and Range of Function. 10(1), 143–156. https://doi.org/10.22342/jme.10.1.5257.143-156
Aziz, T. A., Supiat, & Soenarto, Y. (2019). Pre-service secondary mathematics teachers’ understanding of absolute value. Cakrawala Pendidikan, 38(1). https://doi.org/10.21831/cp.v38i1.21945
Cahyani, L. (2019). Analisis kesulitan belajar matematika diskrit pada mahasiswa manajemen informatika AMIK Bina Sriwijaya Palembang. Prosiding Seminar Nasional Program Pascasarjana Universitas PGRI Palembang, 12(01). https://jurnal.univpgri-palembang.ac.id/index.php/Prosidingpps/article/view/2565
Choi, Y. S. (2015). Effectiveness of game based learning to minimize boolean functions. Multimedia Tools and Applications, 74(17), 7131–7146. https://doi.org/10.1007/s11042-014-1956-8
Dutta, R., Mantri, A., & Singh, G. (2022). Evaluating system usability of mobile augmented reality application for teaching Karnaugh-Maps. Smart Learning Environments, 9(1), 6. https://doi.org/10.1186/s40561-022-00189-8
Elewah, I. A., & Jalaleddine, S. A. (2022). New teaching method to simplify Boolean logic functions using 3D cubes. Dalam G. G. Gregory & A.-S. Poulin-Girard (Ed.), Optics Education and Outreach VII (Vol. 12213, hlm. 37). SPIE. https://doi.org/10.1117/12.2638402
Greefrath, G., Siller, H.-S., Vorhölter, K., & Kaiser, G. (2022). Mathematical modelling and discrete mathematics: opportunities for modern mathematics teaching. ZDM – Mathematics Education, 54(4), 865–879. https://doi.org/10.1007/s11858-022-01339-5
Halmos, P., & Givant, S. (2009). Introduction to Boolean Algebras. Springer New York. https://doi.org/10.1007/978-0-387-68436-9
Hehner, E. C. R. (2004). From boolean algebra to unified algebra. The Mathematical Intelligencer, 26(2), 3–19. https://doi.org/10.1007/BF02985647
Holder, M. E. (2005). A Modified Karnaugh Map Technique. IEEE Transactions on Education, 48(1), 206–207. https://doi.org/10.1109/TE.2004.832879
Jiménez‐Hernández, E. M., Oktaba, H., Díaz‐Barriga, F., & Piattini, M. (2020). Using web‐based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28(6), 1591–1611.
Jiménez-Murillc, J. A., Ortiz-Ortiz, O., Alvarado-Zamora, L. N., & Jimenez-Hernández, E. M. (2018). B-learning in the teaching-learning of boolean function simplification. 2018 6th International Conference in Software Engineering Research and Innovation (CONISOFT), 21–26.
Lockwood, E., Ouvrier-Buffet, C., Vijayakumar, A., Durcheva, M., & Ren, H. (2024). Teaching and learning of discrete mathematics. Proceedings of the 14th International Congress on Mathematical Education, 379–383. https://doi.org/10.1142/9789811287152_0039
Makmuri, M., Aziz, T. A., & Kharis, S. A. A. (2021). Characteristics of problems for developing higher-order thinking skills in mathematics. Journal of Physics: Conference Series, 1882(1), 012074. https://doi.org/10.1088/1742-6596/1882/1/012074
Molina, M., Rodríguez-Domingo, S., Cañadas, M. C., & Castro, E. (2017). Secondary school students’ errors in the translation of algebraic statements. International Journal of Science and Mathematics Education, 15(6), 1137–1156. https://doi.org/10.1007/s10763-016-9739-5
Prasad, Vi. C. (2019). Novel method to simplify Boolean functions. Automatyka/Automatics, 22(2), 29–39. https://doi.org/10.7494/automat.2018.22.2.29
Putri, R. W., Hartuti, P. M., & Maududi, R. Al. (2022). Analisis kemampuan pemecahan masalah aljabar Boolean berdasarkan kemampuan awal dan problem based learning. SAP (Susunan Artikel Pendidikan), 7(2), 324. https://doi.org/10.30998/sap.v7i2.13640
Rosen, K. H. (2018). Discrete mathematics and its applications: with combinatorics and graph theory (8 ed.). McGraw-Hill Education.
Rosenstein, J. G. (2020). Discrete mathematics in 21st century education: An opportunity to retreat from the rush to calculus. Dalam Foundations for the Future in Mathematics Education (hlm. 211–223). Routledge. https://doi.org/10.4324/9781003064527-13
Sandefur, J., Lockwood, E., Hart, E., & Greefrath, G. (2022). Teaching and learning discrete mathematics. ZDM – Mathematics Education, 54(4), 753–775. https://doi.org/10.1007/s11858-022-01399-7
Sari, D. K. (2023). Analisis kesalahan mahasiswa dalam menyelesaikan permasalahan Aljabar Boolean berdasarkan teori Kastolan. Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi, 11(2), 237–247. https://doi.org/10.37905/euler.v11i2.22478
Tiwari, J. P., & Pande, M. (2019). Boolean algebra and harmonic function based computation analysis: a survey and analysis. International Journal of Advanced Technology and Engineering Exploration, 6(53), 107–111. https://doi.org/10.19101/IJATEE.2019.650036
Yumiati, & Haji, S. (2021). Student mistakes in “Algebraic Forms” and their relationship to the ability of teachers and prospective mathematics teachers. International Conference on Educational Sciences and Teacher Profession (ICETeP 2020), 519–522. https://doi.org/10.2991/assehr.k.210227.089
DOI: http://dx.doi.org/10.24127/ajpm.v14i3.9456
Refbacks
- There are currently no refbacks.