STUDENTS’ COVARIATIONAL REASONING REVIEWED FROM COGNITIVE STYLES

Agus Jaenudin(1*),

(1) Universitas Sebelas April
(*) Corresponding Author


Abstract


Covariational reasoning is important for students because it is a basic ability to master mathematical concepts. However, in reality many students have difficulty in working on covariational reasoning. One of the factors that influence covariational reasoning is cognitive style. Therefore, it is necessary to analyze covariational reasoning based on cognitive style. The research method used in this study is a qualitative research on prospective mathematics teacher students as many as 4 people taken from 31 people. The research instrument used in this study was GEFT to determine cognitive style, covariational reasoning worksheets, and interviews. The results showed that subjects with FIK and FIL cognitive styles only met MA 3, but FIL had erroneous thoughts. Meanwhile, FDK only met MA 2 and FDL met MA 1. In general, subjects with FI cognitive style had better covariational reasoning abilities than subjects with FD cognitive style.


Keywords


covariational reasoning; cognitive styles; field independent; field dependent

Full Text:

PDF

References


Bendal, R. C., Galpin, A., Marrow, L. P., & Cassidy, S. (2016, November 15). Cognitive Style: Time to Experiment. Frontiers in Psychology, 7, 1-4.

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying Covariational Reasoning While Modeling Dynamic Events. Journal for Research in Mathematics Education, 33(5), 352-378.

Haryanti, C. F., & Masriyah. (2018). Profil Penalaran Matematika Siswa Smp Dalam Memecahkan Masalah Open Ended Ditinjau Dari Gaya Kognitif Field Dependent Dan Field Independent. MATHEdunesa Jurnal Ilmiah Pendidikan Matematika, 7(2), 197-204.

Hidayanto, T., Zulkarnain, I., Kamaliyah, & Ismail. (2020). Penalaran Kovariasional Mahasiswa Dalam Memodelkan Grafik Hubungan Antara Waktu Dan Kecepatan. Jurnal Penelitian Pembelajaran Matematika, 13(2), 298-312.

Husna, U., Nuraziza, & Angelina, C. M. (2018). Studi Pendahuluan Tentang Profil Berpikir Geometri Siswa SMP Ditinjau dari Perbedaan Gaya Kognitif Field Independent (FI) dan Field Dependent (FD). Journal Of Research In Education , 1(1), 33-39.

Inayah, N. (2017). The Influence Of Mathematical Reasoning And Cognitive Style Toward Student’s Comunication And Connection Ability To The Statistical Topic In Class Xi Exact Of Public Senior High School Palu. JURNAL DAYA MATEMATIS, 5(1), 120-128.

Jaenudin, A. (2016). Analisis Penalaran Kovariasional Mahasiswa Dalam Mengkontruksi Grafik Fungsi Kejadian Dinamik. Widya Sari Jurnal Ilmiah Pendidikan, Sejarah dan Sosial Budaya, 18(6), 27 - 36.

Karpuzcu, S. Y., Ulusoy, F., & Isiksal, M. (2017). Prospective Middle School Mathematics Teachers’ Covariational Reasoning for Interpreting Dynamic Events During Peer Interactions. International Journal of Science and Mathematics Education, 15(1), 89-108.

Kertil, M. (2020). Covariational Reasoning of Prospective Mathematics Teachers: How Do Dynamic Animations Affect? Turkish Journal of Computer and Mathematics Education, 11(2), 312-342.

Kholid, M. N., & Jayanti, I. T. (2022). Truth-Seeking Mahasiswa Dalam Memecahkan Masalah Non-Rutin Ditinjau Dari Gaya Kognitif. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(2), 1241-1254.

Kholid, M. N., Hamida, P. S., Pradana, L. N., & Maharani, S. (2020). Students‘ Critical Thinking Depends On Their Cognitive Style. International Journal Of Scientific & Technology Research, 9(1), 1045-1049.

Mardiyah, I., & Suhito, S. M. (2018). Analysis of mathematical reasoning ability of junior high school students of grade VII viewed from cognitive style on problem based learning with mind mapping. Unnes Journal of Mathematics Education, 7(2), 122-128.

Maswar, Tohir, M., Pradita, D. A., Asyari, D. N., Sardjono, W., & Selviyanti, E. (2022). Mathematics Problem Solving Based on Cognitive Style to Determine of Student Reasoning Abilities in The Covid-19 Pandemic Era. Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, 4(1), 37-51.

Moleong, L. (2009). Metode Penelitian Kualitatif. Bandung: Rosdakarya.

Ngilawajan, D. A. (20`13). Proses Berpikir Siswa SMA dalam Memecahkan Masalah Matematika Materi Turunan Ditinjau dari Gaya Kognitif Field Independent dan Field Dependent. Pedagogia: Jurnal Pendidikan, 2(1), 71-83.

Novalina, D., & Kamid, H. (2022). Analisis Kesulitan Siswa Dalam Menyelesaikan Soal Matematika Berdasarkan Teori Pemrosesan Informasi Ditinjau Dari Gaya Kognitif. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(1), 752-761.

Sakina, P. N., Dewi, D. S., & Putri, A. (2017). The Correlation between Cognitive Styles and Student’s Reading Comprehension. JOURNAL ANGLO-SAXON, 8(1), 68-74.

Sandie, & Susiaty, U. D. (2020). Student’s Covariational Reasoning In Solving Covariational Problems Of Dynamic Events. Journal of Education, Teaching, and Learning, 5(2), 375-382.

Sandie, Purwanto, Subanji, & Hidayanto, E. (2019). Process Thinking Of Students In Translating Representation Of Covariational Dynamic Events Problems. International Journal Of Scientific & Technology Research, 8(10), 1405-1408.

Santoso, K. F., Budiarto, M. T., & Sulaiman, R. (2018). Argumentation in Covariational Reasoning: Middle School Student’s Solving Covariation Problem with Different Cognitive Style. International Conference on Science, Technology, Education, Arts, Culture and Humanity (STEACH 2018) . 227, pp. 27-31. Advances in Social Science, Education and Humanities Research.

Snowman, J., McCown, R., & Biehler, R. (2012). Social Cognitive Theory. Psychology Applied to Teaching (13 ed.). Belmont,: Wadsworth, Cengage Learning.

Son, A. L., Darhim, & Fatimah, S. (2020). Students’ Mathematical Problem-Solving Ability Based On Teaching Models Intervention And Cognitive Style. Journal on Mathematics Education, 11(2), 209-222.

Subanji, R., & Supratman, A. M. (2015). The Pseudo-Covariational Reasoning Thought Processes in Constructing Graph Function of Reversible Event Dynamics Based on Assimilation and Accommodation Frameworks. Research in Mathematics Education, 19(1), 61-79.

Subanji. (2006). Berpikir Pseudo Penalaran Kovariasi dalam Mengkonstruksi Grafik Fungsi Kejadian Dinamik: Sebuah Analisis Berdasarkan Kerangka Kerja VL2P dan Implifikasinya pada Pembelajaran Matematika. Jurnal Ilmu Pendidikan, 13(1), 1-8.

Sudirman, Son, A. L., Rosyadi, & Fitriani, R. N. (2020). Uncovering the Students’ Mathematical Concept Understanding Ability: A Based Study of Both Students’ Cognitive Styles Dependent and Independent Field in Overcoming the Problem of 3D Geometry. Formatif: Jurnal Ilmiah Pendidikan MIPA, 10(1), 1-12.

Taufik, A., Nurhayati, N., Prayitno, A. T., Tresnawati, B., & Syafari, R. (2020). Analysis of Mathematical Proportional Reasoning Ability Based on Field Dependent and Field Independent Cognitive Style. UNISET 2020. Kuningan.

Thompson, P., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai, Compendium for research in mathematics education (pp. 421-456). Reston: NCTM.

Umah, U., & Vitantri, C. A. (2019). Representasi Visual Matematis Mahasiswa Dalam Memodelkan Kejadian Dinamis Ditinjau Dari Perbedaan Gaya Kognitif Dan Jenis Kelamin. Fibonacci: Jurnal Pendidikan Matematika danMatematik, 5(1), 87-96.

Umah, U., Asari, A. R., & Sulandra, I. M. (2016). Struktur Argumentasi Penalaran Kovariasional Siswa Kelas VIIIB MTSN 1 Kediri. JMPM: Jurnal Matematika dan Pendidikan Matematika, 1(1), 1-12.

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive style and their educational implications. Review of educatioanl Reaserch, 47(1), 1-64.

Yekti, S. M., Kusmayadi, T. A., & Riyadi. (2016). Penalaran Matematis Siswa Dalam Pemecahan Masalah Aljabar Ditinjau Dari Gaya Kognitif Field Dependent - Field Independent. Journal of Mathematics and Mathematics Education (JMME), 6(2), 178-192.

Yusuf, Y., & Sukestiyarno, Y. (2022). Pre-service Teachers’ Statistical Reasoning based on Cognitive Style. Jurnal Didaktik Matematika, 9(1), 136-150.

Zaini. (2021). Mathematical Reasoning Abilities Of Students in Terms of Field Dependence (FD) Cognitive Style in Problem-Solving. Multica Science And Technology (MST), 1(1), 1-5.

Zhang, L.-F., & Sternberg, R. J. (2009). Perspectives on the nature of intellectual styles. New York: Springer.




DOI: http://dx.doi.org/10.24127/ajpm.v11i3.5854

Refbacks

  • There are currently no refbacks.