ANALISIS PEMAHAMAN KONSEP MAHASISWA USN KOLAKA DALAM MENYELESAIKAN MASALAH PERSAMAAN DIFFERENSIAL BERDASARKAN TEORI APOS
(1) Universitas Sembilanbelas November Kolaka
(2) Universitas Sembilanbelas November Kolaka
(3) Universitas Sembilanbelas November Kolaka
(*) Corresponding Author
Abstract
Penelitian ini bertujuan untuk menganalisis pemahaman konsep mahasiswa USN Kolaka dalam menyelesaikan masalah persamaan diferensial berdasarkan teori APOS. APOS merupakan suatu teori yang diperkenalkan oleh Dubinsky. Inti dari kerangka kerja APOS Proses, Objek, dan Skema. Jenis penelitian ini adalah deskriptif kualitatif. Subjek pada penelitian ini dipilih menggunakan teknik purposive sampling, sehingga terpilih 3 mahasiswa aktif dengan kemampuan dasar matematika tertinggi pada angkatan 2020 program studi Teknik pertambangan, FST, Universitas Sembilanbelas November Kolaka. Instrumen utama pada penelitian ini adalah peneliti sendiri dan instrumen pendukung adalah soal tes pemahaman konsep matematika Hasil analisis yang dilakukan terhadap 3 mahasiswa menunjukkan bahwa ketiga subjek memiliki kelemahan pada tahap Proses, dimana subjek A,B, dan C belum mampu dengan benar mengkonstruksi soal yang diberikan, hal ini diduga belum memahami dengan benar konsep Persamaan diferensial dengan variabel yang terpisah, artinya bahwa pada tahap Aksi, Objek, Proses, dan Skema, selain itu subjek A, B, dan C juga belum mampu memahami kriteria soal yang dimaksud.hal ini disebabkan oleh pembelajaran persamaan diferensial yang hanya terpaku pada rumus dan prosedur penyelesaian, selain pemahaman konsep mahasiswa yang berbeda-beda, beberapa mahasiwa juga masih belum begitu memahami dasar-dasar dari konsep dasar turunan, diferensial dan integral.
This study aims to analyze the concept understanding of USN Kolaka students in solving equations based on APOS theory. APOS is a theory introduced by Dubinsky. The core of the Process, Object and Schema APOS framework. This type of research is descriptive qualitative. The subjects in this study were selected using a purposive sampling technique, so that 3 active students with the highest basic mathematical abilities were selected in the 2020 batch of Mining Engineering study program, FST, Ninebelas November Kolaka University. The main instrument in this study was the researcher himself and the supporting instrument was a test of understanding mathematical concepts. The results of the analysis conducted on 3 students showed that the three subjects had weaknesses in the process stage, where subject A, B, and C had not been able to correctly construct the questions given, this is presumably not yet correctly understand the concept of differential equations with separate variables, meaning that at the Action, Object, Process, and Schematic stage, other than that subject A, B, and C also has not been able to understand the criteria for the question in question. different concepts of students, some students also still do not really understand the basics of the basic concepts of derivatives, differentials and integrals.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Afgani, M. W., Suryadi, D., & Dahlan, J. A. (2017). Analysis of Undergraduate Students’ Mathematical Understanding Ability of the Limit of Function Based on APOS Theory Perspective. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012056
Altieri, M., & Schirmer, E. (2019). Learning the concept of eigenvalues and eigenvectors: a comparative analysis of achieved concept construction in linear algebra using APOS theory among students from different educational backgrounds. ZDM - Mathematics Education, 51(7), 1125–1140. https://doi.org/10.1007/s11858-019-01074-4
Arnawa, I. M., Sumarno, U., Kartasasmita, B., & Baskoro, E. T. (2012). Applying the APOS Theory To Improve Students Ability To Prove in Elementary Abstract Algebra. Journal of the Indonesian Mathematical Society, 13(1), 133–148.https://doi.org/10.22342/jims.13.1.80.133-148
Arnon, I., Cottrill, J., & Dubinsky, E. (n.d.). APOS Theory.
Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29(2), 94–107. https://doi.org/10.1093/teamat/hrq001
Ayvaz, Ü., Gündüz, N., & Bozkuş, F. (2017). Understanding of prospective mathematics teachers of the concept of diagonal. Journal on Mathematics Education, 8(2), 165–184.https://doi.org/10.22342/jme.8.2.4102.165-184
Azizah, N., Budiyono, B., & Siswanto, S. (2021). Students’ Conceptual Understanding In Terms Of Gender Differences. Journal of Mathematics and Mathematics Education, 11(1), 41.https://doi.org/10.20961/jmme.v11i1.52746
Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. Eurasia Journal of Mathematics, Science and Technology Education, 14(6), 2301–2315. https://doi.org/10.29333/ejmste/89514
Borji, V., & Martínez-Planell, R. (2020). On students’ understanding of implicit differentiation based on APOS theory. Educational Studies in Mathematics, 105(2), 163–179. https://doi.org/10.1007/s10649-020-09991-y
Czocher, J. A., Tague, J., & Baker, G. (2013). Where does the calculus go? An investigation of how calculus ideas are used in later coursework. International Journal of Mathematical Education in Science and Technology, 44(5), 673–684. https://doi.org/10.1080/0020739X.2013.780215
Donuata Imanuel Gery, P., & Widya, F. (2021). Lapisan Pemahaman Konsep Mahasiswa Calon Guru Matematika Dalam Menyelesaikan Soal Logaritma Universitas Kristen Satya Wacana , Salatiga , Indonesia. 10(3), 1541–1553.
Dubinsky, E. (2001). Using a Theory of Learning in College Mathematics Courses. MSOR Connections, 1(2), 10–15. https://doi.org/10.11120/msor.2001.01020010
Ed Dubinsky, M. A. M. (2017). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. International Journal of Science and Applied Science: Conference Series, 1–22.
Febriana, C., & Budiarto, M. T. (2013). Profil Kemampuan Siswa SMA dalam Menyelesaikan Soal Fungsi Kuadrat berdasarkan Teori APOS Ditinjau dari Perbedaan Kemampuan Matematika. MATHEdunesa, 2(3), 1–7.
Habre, S. (2000). Exploring Students’ Strategies to Solve Ordinary Differential Equations in a Reformed Setting. Journal of Mathematical Behavior, 18(4), 455–472. https://doi.org/10.1016/S0732-3123(00)00024-9
Hirschfeld-Cotton, K. (2008). Mathematical Communication, Conceptual Understanding, and Students’ Attitudes Toward Mathematics. Action Research Projects, 4, 54. http://digitalcommons.unl.edu/mathmidactionresearch/4
Hoffkamp, A. (2011). The use of interactive visualizations to foster the understanding of concepts of calculus: Design principles and empirical results. ZDM - International Journal on Mathematics Education, 43(3), 359–372. https://doi.org/10.1007/s11858-011-0322-9
Kazunga, C., & Bansilal, S. (2020). An APOS analysis of solving systems of equations using the inverse matrix method. Educational Studies in Mathematics, 103(3), 339–358. https://doi.org/10.1007/s10649-020-09935-6
Maharaj, A. (2013). An APOS analysis of natural science students’ understanding of derivatives. South African Journal of Education, 33(1), 1–19. https://doi.org/10.15700/saje.v33n1a458
Mahfud, M. S., Mardiyana, M., & Fitriana, L. (2021). Bagaimana Pemahaman Konsep Matematika Siswa Pada Pembelajaran Online? AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(2), 1190.https://doi.org/10.24127/ajpm.v10i2.3681
Niemi, D. (1996). Assessing conceptual understanding in mathematics: Representations, problem solutions, justifications, and explanations. Journal of Educational Research, 89(6), 351–363. https://doi.org/10.1080/00220671.1996.9941339
Ningsih, Y. L., & Rohana, R. (2018). Pemahaman Mahasiswa Terhadap Persamaan Diferensial Biasa Berdasarkan Teori APOS. Jurnal Penelitian Dan Pembelajaran Matematika, 11(1). https://doi.org/10.30870/jppm.v11i1.2995
Nurani, M., Riyadi, R., & Subanti, S. (2021). Profil Pemahaman Konsep Matematika Ditinjau Dari Self Efficacy. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(1), 284. https://doi.org/10.24127/ajpm.v10i1.3388
Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. (2010). Use of models in the teaching of linear algebra. Linear Algebra and Its Applications, 432(8), 2125–2140. https://doi.org/10.1016/j.laa.2009.05.004
Rasmussen, C. L. (2001). New directions in differential equations. The Journal of Mathematical Behavior, 20(1), 55–87. https://doi.org/10.1016/s0732-3123(01)00062-1
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346
Rogovchenko, S. P., Rogovchenko, Y. V, & Equations, D. (2022). Conceptual understanding of solutions to differential equations : How do assessment tasks promote it ? March.
Saxe, G. B., Gearhart, M., & Nasir, N. S. (2001). Enhancing Students’ Understanding of Mathematics: A Study of Three Contrasting Approaches to Professional Support. Journal of Mathematics Teacher Education, 4(1), 55–79. http://www.springerlink.com/index/w32h000556752317.pdf
Şefik, Ö., Erdem Uzun, Ö., & Dost, Ş. (2021). Content Analysis of the APOS Theory Studies on Mathematics Education Conducted in Turkey and Internationally: A Meta-Synthesis Study. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 15(2), 404–428. https://doi.org/10.17522/balikesirnef.1020526
Tai, P. A. (2020). Actions , Processes , Objects , Schemas ( APOS ) in Mathematics Education : a Case Study for Matrix Operations. 11(11), 1115–1122.
Tamalene, H., Palinussa, A. L., & Silitonga, R. H. Y. (2022). Students’ Mathematical Understanding Ability Through the M-APOS Approach on Derivative Materials. AL-ISHLAH: Jurnal Pendidikan, 14(3), 4097–4104. https://doi.org/10.35445/alishlah.v14i3.1876
Ukobizaba, F., Nizeyimana, G., & Mukuka, A. (2021). Assessment Strategies for Enhancing Students’ Mathematical Problem-solving Skills: A Review of Literature. Eurasia Journal of Mathematics, Science and Technology Education, 17(3), 1–10. https://doi.org/10.29333/ejmste/9728
Vajravelu, K. (2018). Innovative Strategies for Learning and Teaching of Large Differential Equations Classes. International Electronic Journal of Mathematics Education, 13(2), 91–95. https://doi.org/10.12973/iejme/2699
Van, T. Q., & Tong, D. H. (2022). A survey of high school teachers ’ perspectives on using APOS theory to develop students ’ problem-solving skills in the context of derivatives. 05(06), 110–118.
Wagner, J. F., Speer, N. M., & Rossa, B. (2007). Beyond mathematical content knowledge: A mathematician’s knowledge needed for teaching an inquiry-oriented differential equations course. Journal of Mathematical Behavior, 26(3), 247–266. https://doi.org/10.1016/j.jmathb.2007.09.002
DOI: http://dx.doi.org/10.24127/ajpm.v11i4.5373
Refbacks
- There are currently no refbacks.