PENALARAN ALJABAR MAHASISWA CALON GURU MATEMATIKA DALAM PEMECAHAN MASALAH MATEMATIKA MENGGUNAKAN PISA FRAMEWORK

Muhammad Syawahid(1*),

(1) Universitas Islam Negeri Mataram
(*) Corresponding Author


Abstract


Penelitian ini bertujuan untuk mendeskripsikan penalaran aljabar Mahasiswa Calon Guru Matematika (MCGM) dalam pemecahan masalah matematika dengan menggunakan PISA framework. Penelitian ini menggunkan pendekatan penelitian kualitatif dengan metode studi kasus. Penelitian dilaksanakan dengan memberikan tes matematika kepada 40 MCGM semester 2 UIN Mataram. MCGM yang menjawab dengan benar dikelompokkan berdasarkan strategi yang digunakan dan dilakukan wawancara untuk memperoleh data secara mendalam. Analisis data dalam penelitian ini dilakukan dengan tiga tahap yaitu reuksi data, penyajian data dan verifikasi/penarikan kesimpulan. Hasil penelitian menunjukkan bahwa MCGM melakukan penalaran aljabar dalam pemecahan masalah matematika dengan dua tipe yaitu functional thinking dan deductive-formalization. Pada tipe functional thinking, pada tahap formulating, MCGM membuat persamaan dua kuantitas. Pada tahap employing, MCGM menggunakan tabel fungsi dan manipulasi angka. Pada tahap interpreting dan evaluating, MCGM melakukan justifikasi dan pengambilan keputusan. Pada tipe deductive-formalization, pada tahap formulating, MCGM membuat persamaan dua kuantitas dengan variabel. Pada tahap employing, MCGM melakukan pengkondisian atau permisalan untuk variabel bebas dan manipulasi angka. Pada tahap interpreting dan evaluating, MCGM melakukan justifikasi dan pengambilan keputusan.

This study aims to describe MCGM algebraic reasoning in solving mathematical problems using the PISA framework. This study used a qualitative research approach with a case study method. The study was carried out by giving mathematics tests to 40 MCGM semester 2 UIN Mataram. MCGMs who answered correctly were grouped according to the strategy used and interviews were conducted to obtain in-depth data. Data analiyze in this study conducted by data reduction, display data and verification or conclution. The results showed that MCGM performed algebraic reasoning in solving mathematical problems with two types, functional thinking and deductive-formalization. In the type of functional thinking, in the formulating stage, MCGM makes an equation of two quantities. In the employing stage, MCGM uses function tables and numerical manipulation. At the interpreting and evaluating stages, MCGM performs justification and decision making. In the ductive-formalization type, in the formulating stage, MCGM makes an equation of two quantities with variables. At the employing stage, MCGM performs conditioning or example for independent variables and manipulation of numbers. At the interpreting and evaluating stages, MCGM performs justification and decision making.


Keywords


Algebraic Reasoning; PISA; problem solving;

References


Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The position and causes of students errors in algebraic thinking based on cognitive style. International Journal of Instruction, 12(1), 1431–1444. https://doi.org/10.29333/iji.2019.12191a

Cetin, H., Erdogan, S. M., & Yazici, N. (2021). Predictive Power of 8th Grade Students’ Translating Among Multiple Representations Skills on their Algebraic Reasoning. International Journal of Progressive Education, 17(5), 119–133. https://doi.org/10.29329/ijpe.2021.375.9

Coskun, S. D. (2021). Pre-service Elementary Teachers’ Reasoning Types of Generalization and Justification on a Figural Pattern Task. Participatory Educational Research (PER), 8(3), 422–440. https://doi.org/http://dx.doi.org/10.17275/per.21.74.8.3

Daud, Y., & Ayub, A. S. (2019). Student Error Analysis in Learning Algebraic Expression : A Study in Secondary School Putrajaya. Creative Education, 10(12), 2615–2630. https://doi.org/10.4236/ce.2019.1012189

Dindyal, J. (2009). Mathematical Problems for the Secondary Classroom. In B. Kaur, Y. B. Har, & M. Kapur (Eds.), Mathematical Problem Solving, Yearbook 2009, Association of Mathematics Educators (pp. 208–225). World Scientific Publishing Co. Pte. Ltd. https://doi.org/DOI: 10.1142/9789814277228_0011

Edo, S., Ilma, R., & Hartono, Y. (2013). Investigating Secondary School Students’ Difficulties in Modeling Problems PISA-Model Level 5 And 6. Journal on Mathematics Education, 4(1), 41–58. https://doi.org/10.1016/S0325-7541(13)70021-X

Fitriani, H. N., Turmudi, T., & Prabawanto, S. (2018). Analysis Of Students Error in Mathematical Problem Solving Based on Newman ’ S Error Analysis. International Conference on Mathematics and Science Education, 3, 791–796.

Glassmeyer, D., & Edwards, B. (2016). How Middle Grade Teachers Think about Algebraic Reasoning. Mathematics Teacher Education and Development, 18, 92–106.

Hackenberg, A. J. (2013). The Journal of Mathematical Behavior The fractional knowledge and algebraic reasoning of students with the first multiplicative concept. Journal of Mathematical Behavior, 32(3), 538–563. https://doi.org/10.1016/j.jmathb.2013.06.007

Hidayah, I. nurul, Sa’dijah, C., Subanji, & Sudirman. (2020). Characteristics of Students’ Abductive Reasoning in Solving Algebra Problems. Journal on Mathematics Education, 11(3), 347–362. https://doi.org/http://doi.org/10.22342/jme.11.3.11869.347-362

Jupri, A., Drijvers, P., & van den Heuvel-Panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Journal, 26(4), 683–710. https://doi.org/10.1007/s13394-013-0097-0

Permendikbud No 37 Tahun 2018, Pub. L. No. 37, 1 (2018). https://jdih.kemdikbud.go.id/sjdih/siperpu/dokumen/salinan/Permendikbud Nomor 37 Tahun 2018.pdf

Lee, Y., Capraro, M. M., Capraro, R. M., & Bicer, A. (2018). A Meta-Analysis : Improvement of Students ’ Algebraic Reasoning through Metacognitive Training. International Education Studies, 11(10), 42–49. https://doi.org/10.5539/ies.v11n10p42

Lepak, J. R., Wernet, J. L. W., & Ayieko, R. A. (2018). Capturing and characterizing students ’ strategic algebraic reasoning through cognitively demanding tasks with focus on representations. Journal of Mathematical Behavior, January, 0–1. https://doi.org/10.1016/j.jmathb.2018.01.003

Ndemo, Z., & Ndemo, O. (2018). Secondary school students’ errors and misconceptions in learning algebra. Journal of Education and Learning (EduLearn), 12(4), 690. https://doi.org/10.11591/edulearn.v12i4.9556

OECD. (2017). PISA 2015 Assessment and Analytical Framework. OECD. https://doi.org/10.1787/9789264281820-en

Powell, S. R., Berry, K. A., & Barnes, M. A. (2020). The role of pre-algebraic reasoning within a word-problem intervention for third-grade students with mathematics difficulty. ZDM, 52(1), 151–163. https://doi.org/https://doi.org/10.1007/s11858-019-01093-1

Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Gardiner, A. M. (2017). A Learning Progression for Elementary Students ’ Functional Thinking A Learning Progression for Elementary Students ’ Functional. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636

Tong, D. H., & Loc, N. P. (2017). Students’ errors in solving mathematical word problems and their ability in identifying errors in wrong solutions. European Journal of Education Studies, 3(6), 226–241. https://doi.org/10.5281/zenodo.581482

Uygun, T., & Guner, P. (2019). Representation of Algebraic Reasoning in Sets through Argumentation. International Journal of Contemporary Educational Research, 6(2), 215–229. https://doi.org/https://doi.org/10.33200/ijcer.557781

Vale, P., Murray, S., & Brown, B. (2013). Mathematical literacy examination items and student errors: An analysis of English Second Language students’ responses. Per Linguam, 28(2), 65–83. https://doi.org/10.5785/28-2-531

Wijaya, A., Heuvel-panhuizen, M. Van Den, Doorman, M., & Robitzch, A. (2014). Difficulties in solving context-based PISA mathematics tasks : An analysis of students ’ errors. The Mathematics Enthusiast, 11(3), 555–584. https://doi.org/10.1139/t02-118

Wilkie, K. J., & Clarke, D. M. (2016). Developing students ’ functional thinking in algebra through different visualisations of a growing pattern ’ s structure. Mathematics Education Research Journal, 28(2), 223–243. https://doi.org/10.1007/s13394-015-0146-y




DOI: http://dx.doi.org/10.24127/ajpm.v11i2.5006

Refbacks

  • There are currently no refbacks.