CLUSTERING SUBJECTS IN LAMPUNG PROVINCIAL NATIONAL EXAMINATION OF JUNIOR HIGH SCHOOL THROUGH MAXIMUM SPANNING TREE

Sugama Maskar(1), Nicky Dwi Puspaningtyas(2*),

(1) Universitas Teknokrat Indonesia
(2) Universitas Teknokrat Indonesia
(*) Corresponding Author


Abstract


Abstrak

Ujian Nasional yang dilaksanakan setiap tahun di Indonesia telah menghasilkan banyak data, termasuk di Provinsi Lampung. Pada rentang tahun 2015 sampai dengan tahun 2018, telah terkumpul kurang lebih 11 juta data hasil ujian nasional. Data tersebut tentu dapat memberikan banyak informasi untuk perbaikan Pendidikan Indonesia di masa mendatang. Tulisan ini membahas tentang pengelompokan mata pelajaran pada Ujian Nasional SMP di Provinsi Lampung dengan tujuan untuk memetakan hubungan hasil belajar Matematika, IPA, Bahasa Indonesia, dan Bahasa Inggris. Tujuan pengelompokan tersebut sebagai analisa lebih jauh agar perbaikan pendidikan juga dapat mulai masuk pada ranah non-teknis, seperti penjadwalan, penyeusaian waktu belajar di kelas sampai dengan waktu pengerjaan tugas, serta perbaikan pada penentuan mata pelajaran yang menjadi syarat pelajaran lainnya. Analisis klusterisasi dilakukan dengan menggunakan Algoritma Kruskal berdasarkan graf maximum spanning tree (MST) dengan bantuan teknik statistik deskriptif dan inferensial. Data yang digunakan adalah hasil Ujian Nasional di Provinsi Lampung tahun 2017 dan 2018 sebanyak 15876 data. Graf MST ditentukan menggunakan algoritma Kruskal dan koefisien korelasi ditentukan menggunakan nilai koefisien korelasi Pearson. Hasil eksperimen menunjukkan bahwa Matematika, IPA, dan Bahasa Inggris memiliki korelasi yang paling kuat. Mata pelajaran yang paling kuat korelasinya dengan Bahasa Indonesia adalah Bahasa Inggris. Oleh karena itu, pemetaan mata pelajaran dapat disusun menjadi dua kelompok yaitu Matematika-IPA-Bahasa Inggris dan Bahasa Inggris- Bahasa Indonesia- IPA. Hasil tersebut dapat bermanfaat sebagai dasar pengambilan keputusan pada berbagai aspek teknis untuk mengoptimalkan hasil belajar siswa SMP khususnya di Provinsi Lampung.

 

Kata kunci: Klusterisasi, Lampung, Ujian Nasional

 

Abstract

National exams carried out every year in Indonesia have produced a lot of data, including in Lampung Province. In the span of 2015 to 2018, approximately 11 million national exam results have been collected. This data can certainly provide a lot of information for the improvement of Indonesian education. This paper discusses the clustering of subjects on junior high school national exams in Lampung Province with the aim of mapping the relationship of learning outcomes in Mathematics, Sciences, Indonesian, and English. The purpose of the clustering is as a further analysis so that educational improvements can also begin to enter the non-technical realm, such as scheduling, adjusting class and assignment time, and also determine prerequisite subjects. Clustering analysis is performed using an algorithm based on maximum spanning tree (MST) graphs with the help of descriptive and inferential statistical techniques. The data used are the results of national exams in Lampung province in 2017 and 2018 totaling 15.876 data. The MST Graph is determined using Kruskal’s algorithm and the coefficient of correlation is determined using Pearson coefficient of correlation value. The experimental results show that Mathematics, Natural Sciences, and English have the strongest correlation. Subject that has the strongest correlation with Indonesian is English. Therefore, the mapping of subjects can be arranged into two groups namely Mathematics- Sciences- English and English-Indonesian- Sains. These results can be useful as a basis for decision making on various technical aspects to optimize junior high school student learning outcomes, especially in Lampung Province.

Keywords: Clusterization, Lampung, National Examination


Keywords


Clusterization, National Examination, Lampung

Full Text:

PDF

References


A. Imam, O. (2016). Effects of Reading Skills on Students’ Performance in Science and Mathematics in Public and Private Secondary Schools. Journal of Education and Learning (EduLearn), 10(2), 177–186. https://doi.org/10.11591/edulearn.v10i2.3430

Admin. (2017). Tentang Ujian Nasional Berbasis Komputer. Kemdikbud. https://unbk.kemdikbud.go.id/tentang

Cheng, D., Zhu, Q., Huang, J., Wu, Q., & Lijun, Y. (2014). Clustering with local density peaks-based minimum spanning tree. IEEE Transactions on Knowledge and Data Engineering, 13(9), 1–15. https://doi.org/10.1109/tkde.2019.2930056

Crobe, A., Demuru, M., Didaci, L., Marcialis, G. L., & Fraschini, M. (2016). Minimum spanning tree and k -core decomposition as measure of subject-specific EEG traits. Biomedical Physics & Engineering Express, 2, 1–7. https://doi.org/10.1088/2057-1976/2/1/017001

Fenoll, A. A. (2018). English proficiency and mathematics test scores of immigrant children in the US. Economics of Education Review, 64(April), 102–113. https://doi.org/10.1016/j.econedurev.2018.04.003

Hacioğlu, Y., Yamak, H., & Kavak, N. (2016). Pre-service science teachers’ cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. Journal of Turkish Science Education, 13(Specialissue), 88–102. https://doi.org/10.12973/tused.10173a

Hussain, S., Atallah, R., & Kamsin, A. (2019). Cybernetics and Algorithms in Intelligent Systems (Vol. 765, Issue January). Springer International Publishing. https://doi.org/10.1007/978-3-319-91192-2

Kenneth H. Rosen. (2013). Elementay Number Theory and Its Applications. Pearson.

Kumar, B., & Pal, S. (2011). Mining Educational Data to Analyze Students Performance. International Journal of Advanced Computer Science and Applications, 2(6). https://doi.org/10.14569/ijacsa.2011.020609

Li, Y., Gou, J., & Fan, Z. (2019). Educational data mining for students’ performance based on fuzzy C-means clustering. The Journal of Engineering, 2019(11), 8245–8250. https://doi.org/10.1049/joe.2019.0938

Lingaya, S. R., Gerardo, B. D., & Medina, R. P. (2019). Modified graph-theoretic clustering algorithm for mining international linkages of philippine higher education institutions. International Journal of Advanced Computer Science and Applications, 10(6), 90–95. https://doi.org/10.14569/ijacsa.2019.0100613

Maskar, S. (2018). Alternatif Penyusunan Materi Ekspresi Aljabar Untuk Siswa Smp/Mts Dengan Pendekatan Pendidikan. Prisma, VII(1), 53–69.

Maskar, S. (2020). Maximum Spanning Tree Graph Model: National Examination Data Analysis of Junior High School in Lampung Province. Proceeding International Conference on Science and Engineering, 3(April), 375–378. https://doi.org/10.14421/icse.v3.531

Maskar, S., & Anderha, R. R. (2019). Pembelajaran transformasi geometri dengan pendekatan motif kain tapis lampung. Mathema Journal, 1(1), 40–47.

Maskar, S., & Dewi, P. S. (2020). Praktikalitas dan Efektifitas Bahan Ajar Kalkulus Berbasis Daring Berbantuan Geogebra. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(2), 888–899. https://doi.org/10.31004/cendekia.v4i2.326

Maskar, S., & Wulantina, E. (2019). Persepsi Peserta Didik terhadap Metode Blended Learning dengan Google Classroom. Inomatika (Jurnal Pendidikan Matematika), 1(2), 110–121. https://doi.org/https://doi.org/10.35438/inomatika.v1i2.156

Mishra, A., Bansal, R., & Singh, S. N. (2017). Educational data mining and learning analysis. Proceedings of the 7th International Conference Confluence 2017 on Cloud Computing, Data Science and Engineering, 491–494. https://doi.org/10.1109/CONFLUENCE.2017.7943201

Murray, M. (2017). How does the grade obtained at school for English and Mathematics affect the probability of graduation at a university? Pythagoras, 38(1), 1–7. https://doi.org/10.4102/pythagoras.v38i1.335

Nurviana. (2016). Mengukur Mutu Pendidikan Berdasarkan Nilai Ujian Nasional Program IPA SMAN 3 Putra Bangsa Lhoksukon Aceh Utara Tahun 2014 Dan 2015. Institut Teknologi Bandung (ITB).

P. Ferrer, F., & J. Dela Cruz, R. (2017). Correlation of Stem Students’ Performance in the National Career Assessment Examination and Academic Subjects. PEOPLE: International Journal of Social Sciences, 3(1), 532–541. https://doi.org/10.20319/pijss.2017.s31.532541

Prinsloo, C. H., & Harvey, J. C. (2020). The Differing Effect of Language Factors on Science and Mathematics Achievement Using TIMSS 2015 Data: South Africa. Research in Science Education, 50(6), 2207–2226. https://doi.org/10.1007/s11165-018-9769-9

Shingari, I., Kumar, D., & Khetan, M. (2017). A review of applications of data mining techniques for prediction of students’ performance in higher education. Journal of Statistics and Management Systems, 20(4), 713–722. https://doi.org/10.1080/09720510.2017.1395191

Silva, C., & Fonseca, J. (2017). Educational Data Mining: A Literature Review. In In Europe and MENA Cooperation Advances in Information and Communication Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-46568-5

Song, K., Li, C., Zhang, G., & Xing, C. (2019). Query based graph data reduction algorithms and application in education. 14th International Conference on Computer Science and Education, ICCSE 2019, Iccse, 550–555. https://doi.org/10.1109/ICCSE.2019.8845357

Stacey, J. (2016). Does adding Mathematics to English language learners’ timetables improve their acquisition of English? Language Issues, 27(1), 84–87. http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,shib&db=bri&AN=117114062&site=ehost-live

Stoffelsma, L., & Spooren, W. (2019). The Relationship Between English Reading Proficiency and Academic Achievement of First-Year Science and Mathematics Students in a Multilingual Context. International Journal of Science and Mathematics Education, 17(5), 905–922. https://doi.org/10.1007/s10763-018-9905-z

Sugiyono. (2015). Metode Penelitian Kombinasi (Mix Methods). Alfabeta.

Walter, N., & Dubey, S. K. (2016). Design and development of novice conceptual approach for minimum spanning tree. Proceedings of the 2016 6th International Conference - Cloud System and Big Data Engineering, Confluence 2016, 713–717. https://doi.org/10.1109/CONFLUENCE.2016.7508212

Wattimena, A. Z., & Lawalatta, S. (2013). Aplikasi Algoritma Kruskal Dalam Pengotimalan Panjang Pipa. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 7(2), 13–18. https://doi.org/10.30598/barekengvol7iss2pp13-18

Wulantina, E., & Maskar, S. (2019). Pengembangan Bahan Ajar Matematika Berbasis Lampungnese Etnomatematics. Edumatica: Jurnal Pendidikan Matematika, 09(02), 71–78. https://doi.org/https://doi.org/10.22437/edumatica.v9i02.7493

Yang, J. (2017). Clustering Analyzing of Undergraduate Schools based on K-Means Algorithm. Proceedings of the 2017 International Conference on Advanced Mechatronic Systems, 309–311.




DOI: http://dx.doi.org/10.24127/ajpm.v10i4.4111

Refbacks

  • There are currently no refbacks.