KONSTRUKSI SKEMA KOMUNIKASI MATEMATIS BERDASARKAN GAYA BERPIKIR TEORITIS

Mohammad Archi Maulyda(1*), Vivi Rachmatul Hidayati(2), Muhammad Erfan(3),

(1) FKIP, Universitas Mataram
(2) FKIP, Universitas Mataram
(3) FKIP, Universitas Mataram
(*) Corresponding Author


Abstract


Komunikasi matematis merupakan salah satu kemampuan yang wajib dimiliki oleh anak untuk belajar matematika dengan baik. Kemampuan komunikasi matematis merupakan salah satu standar yang diakui oleh NCTM sebagai organisasi guru matematika Internasional. Kemampuan komunikasi setiap orang berbeda-beda, salah satu yang membuatnya berbeda adalah gaya berpikir orang tersebut. Salah satu gaya berpikir yang ada adalah gaya berpikir teoritis. Karena itu peneliti bertujuan untuk memberikan skema komunikasi matematis mahasiswa berdasarkan gaya berpikir teoritis. Pendekatan penelitian yang digunakan adalah pendekatan kualitatif-deskriptif. Peneliti memberikan soal kepada 35 mahasiswa sebagai calon subjek penelitian. Selanjutnya peneliti memilih mahasiswa yang memiliki gaya berpikir teoritis menggunakan indikator Honey-Mumford. Setelah itu hasil pekerjaan subjek di analisis menggunakan indikator komunikasi matematis. Hasil penelitian menunjukkan subjek menyelesaikan masalah yang diberikan secara runtut dan urut. Skema komunikasi matematis yang terbentuk cenderung sesuai dengan tahapan pemecahan masalah. Hasil penelitian juga menunjukkan bahwa akurasi jawaban mahasiswa yang memiliki gaya berpikir teoritis lebih baik dibandingkan gaya berpikir pragmatis dan reflektif

Keywords


mathematical communication; NCTM; theoretical learning style; thinking process

References


Danişman, Ş., & Erginer, E. (2017). The predictive power of fifth graders ’ learning styles on their mathematical reasoning and spatial ability on their mathematical reasoning and spatial ability. Cogent Education, 7(1), 1–18. https://doi.org/10.1080/2331186X.2016.1266830

Dina, Z. H., & Ikhsan, M. (2019). The Improvement of Communication and Mathematical Disposition Abilities through Discovery Learning Model in Junior High School. Journal of Research and Advances in Mathematics Education, 4(1), 11–22.

Gultom, E. M., Syahputra, E., & Amin Fauzi, K. M. (2020). Differences in Students’ Mathematical Communication Ability through the Application of Batak Culture-Oriented Learning on Problem-Based Learning and Guided Discovery. International Journal of Multicultural and Multireligious Understanding, 7(10), 731. https://doi.org/10.18415/ijmmu.v7i10.2236

Kosko, K. W., & Gao, Y. (2017). Mathematical Communication in State Standards Before the Common Core. Educational Policy, 31(3), 275–302. https://doi.org/10.1177/0895904815595723

Lehman, M. E. (2011). Relationships of Learning Styles , Grades , and Instructional Preferences. NACTA Joural, 55(2), 40–45.

Liu, Y.-C., & Liang, C. (2020). Neurocognitive Evidence for Different Problem-Solving Processes between Engineering and Liberal Arts Students. International Journal of Educational Psychology, 9(2), 104. https://doi.org/10.17583/ijep.2020.3940

María, G., & Clara Jessica. (2016). Using blogs to enhance the capacity of mathematical communication in High School. Revista Complutense de Educación, 27(3), 1327–1350.

Maulyda, M. A., Rahmatih, A. N., Gunawan, Hidayati, V. R., & Erfan, M. (2020). Retroactive Thinking Interference of Grade VI Students : A Study on the Topics of PISA Literacy Lessons. Journal of Physics: Conference Series, 1471(Maret), 1–7. https://doi.org/10.1088/1742-6596/1471/1/012037

Muqtada, M. R., Irawati, S., & Qohar, A. (2018). Reciprocal Teaching assisted by GeoGebra to Improve Students Mathematical Communication. Jurnal Pendidikan Sains, 6(4), 238–246.

Naug, H. L., Colson, N. J., & Donner, D. (2016). Experiential Learning, Spatial Visualization and Metacognition: An Exercise with the “Blank Page” Technique for Learning Anatomy. Health Professions Education, 2(1), 51–57. https://doi.org/10.1016/j.hpe.2016.01.001

Pourdavood, B. R., Mccarthy, K., & Mccafferty, T. (2015). The Impact of Mental Computation on Children ’ s Mathematical Communication , Problem Solving , Reasoning , and Algebraic Thinking. Journal of Mathematical Analysis and Applications, 34(2), 1–13.

Reuter, T., Schnotz, W., & Rasch, R. (2015). Drawings and Tables as Cognitive Tools for Solving Non-Routine Word Problems in Primary School. American Journal of Educational Research, 3(11), 1387–1397.

Sari, D. P., & Rosjanuardi, R. (2018). Errors of Students Learning With React Strategy in Solving the Problems of Mathematical. Journal Mathematics Education, 9(1), 121–128.

Sukoriyanto, J., Nusantara, T., Subanji, S., & Tjang, D. C. (2016). Students thinking process in solving combination problems considered from assimilation and accommodation framework. Educational Research and Reviews, 11(16), 1494–1499. https://doi.org/10.5897/ERR2016.2811

Sür, B., & Delice, A. (2016). The examination of teacher student communication process in the classroom : mathematical communication process model. SHS Web of Conferences, 01(10), 59–69.

The National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. The National Council of Teachers of Mathematics, Inc.

Triana, M., & Zubainur, C. M. (2019). Students ’ Mathematical Communication Ability through the Brain-Based Learning Approach using Autograph. Journal of Research and Advances in Mathematics Education, 4(1), 1–10.

Wilkinson, L. C., Bailey, A. L., & Maher, C. A. (2018). Students ’ Mathematical Reasoning , Communication , and Language Representations : A Video-Narrative Analysis. ECNU REVIEW OF EDUCATION, 1(3), 1–22. https://doi.org/10.30926/ecnuroe2018010301

Wilson, B. (2019). Mathematical Communication through Written and Oral Expression. Journal of Mathematics Education, 23(3), 122–134.




DOI: http://dx.doi.org/10.24127/ajpm.v10i3.4074

Refbacks

  • There are currently no refbacks.