BAGAIMANA BENTUK TUGAS MATEMATIKA YANG MAMPU MENDORONG MUNCULNYA PENALARAN IMITATIF DAN KREATIF?

Kusaeri Kusaeri(1*), Yuni Arrifadah(2), Anni Mujahidad Dina(3),

(1) UIN Sunan Ampel Surabaya
(2) UIN Sunan Ampel Surabaya
(3) UIN Sunan Ampel Surabaya
(*) Corresponding Author


Abstract


Abstrak

Tugas matematika di Indonesia didominasi oleh jenis closed task. Padahal untuk mempelajari penalaran imitatif dan kreatif, siswa harus berlatih berbagai macam jenis tugas di antaranya closed task dan open task. Penelitian ini bertujuan untuk: mendeskripsikan desain closed task dan open task yang mampu mendorong munculnya penalaran imitatif dan kreatif. Penelitian ini merupakan penelitian deskriptif kualitatif. Subjek dalam penelitian ini adalah siswa SMPN 4 Waru yang dipilih menggunakan teknik purposive sampling. Data dikumpulkan melalui teknik catatan lapangan, tes penalaran imitatif dan kreatif, serta wawancara berbasis tugas. Data dianalisis dengan cara membandingkan tabulasi terkait ketercapaian indikator tipe penalaran imitatif (MR dan AR) serta indikator tipe penalaran kreatif (LCR dan GCR) pada masing-masing tugas berdasarkan hasil wawancara dan hasil tes penalaran imitatif dan kreatif. Hasil penelitian menunjukkan bahwa closed task yang menanyakan rumus suku ke-n yang telah diketahui siswa akan memunculkan tipe MR, sebaliknya closed task yang berkaitan dengan penerapan rumus yang telah diketahui siswa untuk mencari suku selanjutnya dari suatu barisan bilangan akan memunculkan tipe AR. Open task yang menanyakan pola ke-n dari konfigurasi objek dan banyak melibatkan hal baru bagi siswa akan cenderung memunculkan tipe GCR, sebaliknya open task yang menanyakan suku selanjutya dari barisan bilangan dan tidak sepenuhnya baru/banyak melibatkan hal-hal yang telah diketahui siswa cenderung memunculkan tipe LCR.

 

Kata kunci: Closed Task; Open Task; Penalaran Imitatif; Penalaran Kreatif.

 

Abstract

Mathematical tasks in Indonesia are dominated by closed task type. However to learn imitative and creative reasoning that plays an important role in producing conclusions when completing assignments, students must practice various types of tasks including closed tasks and open tasks. Therefore, this study aims to: 1) describe the closed task and open task designs that encourage the emergence of imitative and creative reasoning, 2) describe the relationship between closed tasks and open tasks given with the emerging types of imitative and creative reasoning. This research is a design research and the subjects were 5 students of SMPN 4 Waru who selected by using purposive sampling technique. The data collection techniques used field notes, imitative and creative reasoning tests, and task-based interviews. In general, designing closed tasks and open tasks that encourage imitative and creative reasoning is carried out based on the stages of theories from Gravemeijer and Cobb. Start with compiling the HLT, designing assignments according to: 1) the 2013 curriculum, 2) the materials and assignments that students have encountered and never encountered, doing experiment, then the data obtained were analyzed using HLT theory. Giving closed tasks that asks for a formula that students known tends to bring up the MR type, while those related to the application of the formula tend to bring up the AR type. Giving open tasks that can be interpreted in a variety of ways and involves a lot of new things for students tends to bring up the GCR type, if it involves a lot of things that students already know it tends to bring up the LCR type.

 

Keywords:Closed Task; Creative Reasoning; Imitative Reasoning; Open Task. 


Keywords


Closed Task; Open Task; Penalaran Imitatif; Penalaran Kreatif.

References


Alifiyah, Y. R., & Kurniasari, I. (2019). Identifikasi Tingkat Berpikir Kritis Siswa dalam Memecahkan Masalah Open Ended ditinjau dari Gaya Berpikir Stenberg. MATHEdunesa, 8(2), 216–222.

Andar, A., & Ikman, I. (2016). Deskripsi Kesalahan Siswa Dalam Menyelesaikan Soal-Soal Ujian Semester Matematika Siswa Kelas Viii Smp Negeri 10 Kendari. Jurnal Penelitian Pendidikan Matematika, 4(2), 15–28.

Ayal, C. S., Kesuma, Y. S., Sabandar, J., & Dahlan, J. A. (2016). The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy. Journal of Education and Practice, 7(25), 50–58.

Bergqvist, E. (2007). Types of reasoning required in university exams in mathematics. Journal of Mathematical Behavior, 26(4), 348–370. https://doi.org/10.1016/j.jmathb.2007.11.001

Bergqvist, E. (2012). University Mathematics Teachers’ Views on the Required Reasoning in Calculus Exams. The Mathematics Enthusiast, 9(3), 371–408.

Bergqvist, T., & Lithner, J. (2012). Mathematical reasoning in teachers’ presentations. Journal of Mathematical Behavior, 31(2), 252–269. https://doi.org/10.1016/j.jmathb.2011.12.002

Berisha, V., & Bytyqi, R. (2020). Types of Mathematical Tasks Used in Secondary Classroom Instruction. International Journal of Evaluation and Research in Education, 9(3), 751–758. https://doi.org/10.11591/ijere.v9i3.20617

Boesen, J., Lithner, J., & Palm, T. (2010). The relation between types of assessment tasks and the mathematical reasoning students use. Educational Studies in Mathematics, 75(1), 89–105. https://doi.org/10.1007/s10649-010-9242-9

Dwirahayu, G., Mas’ud, A., Satriawati, G., Atiqoh, K. S. N., & Dewi, S. (2021). Improving students ’ mathematical creative reasoning on polyhedron through concept-based inquiry model Improving students ’ mathematical creative reasoning on polyhedron through concept-based inquiry model. Journal of Physics: Conference Series, 1–10. https://doi.org/10.1088/1742-6596/1836/1/012073

Johnson, H. L., Coles, A., & Clarke, D. J. (2017). Mathematical tasks and the student: navigating “tensions of intentions” between designers, teachers, and students. ZDM-The International Journal on Mathematics Education, 49(6), 813-822.

Jones, K. & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19, 105 – 121.

Kemdikbud. (2018). Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 35. Jakarta: Kementrian Pendidikan dan Kebudayaan.

Koichu, B., Zaslavsky, O., & Dolev, L. (2016). Effects of variations in task design on mathematics teachers’ learning experiences: A case of sorting task. Journal of Mathematics Teacher Education, 19, 349-370.

Kurniasih, A. W. (2014). Budaya Mengembangkan Soal Cerita Kontekstual Open-Ended Mahasiswa Calon Guru Matematika untuk Meningkatkan Berpikir Kritis. 5, 9–17.Kusaeri, K. (2020). Reorientasi penilai-an pembelajaran Matemati-ka: Dulu, kini, dan mendatang. Naskah Pidato Pengukuhan Guru Besar Bidang Evaluasi Pembelajaran Matematika. Surabaya: UIN Sunan Ampel Surabaya.

Lithner, J. (2015). Selected Regular Lectures from the 12th International Congress on Mathematical Education. Selected Regular Lectures from the 12th International Congress on Mathematical Education, 487–506. https://doi.org/10.1007/978-3-319-17187-6

Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. ZDM - Mathematics Education, 49(6), 937–949. https://doi.org/10.1007/s11858-017-0867-3

Rosita, N.T., Sukestiyarno, Y. L., Kartono, & Mulyono. (2020). The Analysis of Students Mathematical Reasoning in Completing the Word Problem in SMPN 7 Sumedang. 443, 115–119. https://doi.org/10.2991/assehr.k.200620.023

Olsson, J. (2019). Relations Between Task Design and Students’ Utilization of GeoGebra. Digital Experiences in Mathematics Education, 5(3), 223–251. https://doi.org/10.1007/s40751-019-00051-6

Palm, T., Boesen, J., & Lithner, J. (2011). Mathematical reasoning requirements in Swedish upper secondary level assessments. Mathematical Thinking and Learning, 13(3), 221–246. https://doi.org/10.1080/10986065.2011.564994

Permatasari, N., Darhim, D., & Jupri, A. (2020). Students’ imitative and creative reasoning ability in solving geometry problems. Journal of Physics: Conference Series, 1469(1). https://doi.org/10.1088/1742-6596/1469/1/012166

Prahmana, R. C. I. (2016). Local Instruction Theory Penelitian Pendidikan Matematika untuk Menumbuhkan Keterampilan Mahasiswa Calon Guru dalam Melakukan Penelitian dan Menulis Karya Ilmiah (Issue August) [Universitas Pendidikan Indonesia]. https://doi.org/10.13140/RG.2.2.27173.70883

Rizta, A., Zulkardi, Z., & Hartono, Y. (2013). Pengembangan Soal Penalaran Model Timss Matematika SMP. Jurnal Penelitian Dan Evaluasi Pendidikan, 17(2), 230–240. https://doi.org/10.21831/pep.v17i2.1697

Romli, S. (2019). Pengembangan Lembar Kerja Siswa ( LKS ) Berbasis Open Ended ( Tesis ) (Issue January) [Universitas Lampung]. https://doi.org/10.13140/RG.2.2.21100.51844

Sidenvall, J., Lithner, J., & Jäder, J. (2015). Students’ reasoning in mathematics textbook task-solving. International Journal of Mathematical Education in Science and Technology, 46(4), 533–552. https://doi.org/10.1080/0020739X.2014.992986

Sukirwan, Darhim, D., & Herman, T. (2018). Analysis of students’ mathematical reasoning. Journal of Physics: Conference Series, 948(1). https://doi.org/10.1088/1742-6596/948/1/012036

Sutini, S., Aaidati, I. F., & Kusaeri, K. (2020). Identifying The Structure of Students’ Argumentation in Covariational Reasoning of Constructing Graphs. Beta: Jurnal Tadris Matematika, 13(1), 61–80. https://doi.org/10.20414/betajtm.v13i1.374

Swan, M. (2011). Designing tasks that challenge values, beliefs, and practices: A model for the professionaldevelopment of prac-ticing teachers. In O. Zaslavsky & P. Sullivan (Eds.), Constructing knowledge forteaching secondary mathematics. New York: Springer.




DOI: http://dx.doi.org/10.24127/ajpm.v10i4.3887

Refbacks

  • There are currently no refbacks.