BERPIKIR MATEMATIS RIGOR: KONTRIBUSI PADA PENGEMBANGAN PENGETAHUAN METAKOGNITIF-SELF ASSESSMENT MAHASISWA
(1) Universitas Pendidikan Indonesia Universitas Swadaya Gunung Jati
(2) Universitas Pendidikan Indonesia
(*) Corresponding Author
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Alpi, K, M, & Evans, J, J. (2019). Distinguishing Case Study as A Research Method From Case Reports as A Publication Type. Journal of The Medical Library Assosiation, 107(1), 1 – 5.
Catarreira, S, M, V., Lopes, V, G., Garcia, L, M, C., & Gonzalez, R, L. (2017). Evaluation of Changes in Cognitive Structures After the Learning Process in Mathematics. International Journal of Innovation in Science and Mathematics Education, 25(2), 17–33.
Chang, M. (2010). Effects of Self-Monitoring on Web-Based Language Learner’s Performance and Motivation. CALICO Journal, 27(2).
Colognesi, S., Piret, C., Demorsy, S., & Barbier, E. (2020). Teaching Writing—With or Without Metacognition?: An Exploratory Study of 11- to 12-Year-Old Students Writing A Book Review. International Electronic Journal of Elementary Education, 12(5), 459 – 470.
Creswell, J, W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches. 4th ed. Thousand Oaks, CA: SAGE.
Fitriyani, H. (2013). Profil Berpikir Matematis Rigor Siswa SMP dalam Memecahkan Masalah Matematika Ditinjau dari Perbedaan Kemampuan Matematika. AdMathEdu, 3(1).
Griffin, P. (2018). Assessment for Teaching (Second Edition). Sydney: Cambridge University Press.
Hern, J, & McMillan. (2008). Student Self-assessment: The Key to Stronger Student Motivation and Higher Achievement. Educational Horizons, 87(1), 40 – 49.
Hostetler, K., Luo, T., & Stefaniak, J, E. (2018). Aligning Information Literacy Assessment with Metacognitive Strategies. Journal of University Teaching & Learning Practice, 15(5).
Hsu, Y, S., Iannone, P., She, H, C., & Hadwin, A. (2016). Metacognition for Science and Mathematics Learning in Technology-Infused Learning Environments. International Journal of Science and Mathematics Education, 14, 243 – 248.
Ifenthaler, D., Masduki, I., & Seel, N, M. (2011). The Mystery of Cognitive Structure and How We Can Detect It: Tracking the Development of Cognitive Structures Over Time. Instr Sci 39, 41–61.
Jaleel, S, & Premachandran, P. (2016). A Study on the Metacognitive Awareness of Secondary School Students. Universal Journal of Educational Research, 4(1), 165-172.
Kinard, J, T. (2006). Creating Rigorous Mathematical Thinking: A Dynamic that Drives Mathematics and Science Conceptual Development. Transylvanian Journal of Psychology, 5.
Kinard, J, T, & Kozulin, A. (2008) Rigorous Mathematical Thinking: Conceptual Formation in the Mathematics Classroom. New York: Cambridge University Press.
Magsalay, R, J, M., Luna, C, A., & Tan, R, G. (2019). Comparing the Effect of Explicit Mathematics Instruction with Rigorous Mathematical Thinking Approach and 5E’s Instructional Model on Students’ Mathematics Achievement. American Journal of Educational Research, 7(6), 402-406.
McComas, W. F. (2014). The Language of Science Education: an Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning, (p. 63). Rotterdam, The Netherlands: Sense.
Navaneedhan, C., & Kamalanabhan, T. (2017). What Is Meant by Cognitive Structures? How Does It Influence Teaching –Learning of Psychology?. IRA International Journal of Education and Multidisciplinary Studies (ISSN 2455-2526), 7(2), 89-98.
Nbina, J, & Viko, B. (2010). Effect Of Instruction In Metacognitive Selfassessment Strategy On Chemistry Self-efficacy And Achievement Of Senior Secondary School Students In Rivers State, Nigeria. Academic Leadership: The Online Journal, 8(4).
Nuhfer, E., Fleisher, S., Cogan, C., Wirth, K., & Gaze, E. (2017). How Random Noise and A Gr How Random Noise and A Graphical Conv Aphical Convention Subention Subverted Behavioral Scientists' Explanations of Self-assessment Data: Numeracy Underlies Better Alternatives. Numeracy, 10(1).
Prabowo, A, & Juandi, D. Analisis situasi didaktis dalam pembelajaran matematika berbantuan ICT pada siswa SMP. Pythagoras: Jurnal Pendidikan Matematika, 15(1), 1 – 12.
Purwaningsih, W, I. (2017). Hubungan Kemampuan Metakognitif dan Kemampuan Kognitif Mahasiswa dalam Pembelajaran Learning Cycle 7E Berbantuan Microsoft Mouse Mischief. Jurnal Pendidikan Surya Edukasi (JPSE), 3(2), 56 – 66.
Schoenfeld, A, H. (2015). What Mathematics Should Kids Learn, and How Should They Learn It? The American Journal of Psichology, 122(3).
Sukiyanto. (2020). Munculnya Kesadaran Metakognisi dalam Menyelesaikan Masalah Matematika. Aksioma Jurnal, 9(1), 126 – 132.
Syafa’ah, H, K, & Handayani, L. (2015). Pengembangan Metacognitive Self–Assessment untuk Mengukur Pengetahuan Berpikir Evaluasi dalam Membaca Teks Sains Berbahasa Inggris. Unnes Physics Education Journal, 4(1): 43 – 48.
Syafa’ah, H, K, & Handayani, L. (2015). Pengembangan Metacognitive Self–Assessment untuk Mengukur Keterampilan Berpikir Evaluasi dalam Membaca Teks Sains Berbahasa Inggris. Unnes Physics Education Journal, 4(1).
Syahputri, A, L, & Fitriyani, H. (2019). Pendekatan Rigorous Mathematical Thinking untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika Siswa. Indonesia Mathematics Education, 2(2): 71 – 81.
Siahaan, M, F.(2017). Students’ Perceptions of the Constructivist Instructional Methods in A Teaching and Learning Course. International Journal of Pedagogy and Teacher Education, 1(2), 155 – 173.
Ultanir, E. (2012). An Epistemological Glance at the Constructivist Approach: Constructivist Learning in Dewey, Piaget, and Montessori. International Journal of Instruction, 5(2), 195 – 212.
Veenman, M, V, J. (2012). Metacognition In Science Education: Definitions, Constituents, And Their Intricate Relation With Cognition. In A. Zohar & Y. J. Dori (Eds.), Metacognition in Science Education: Trends In Current Research, Contemporary Trends And Issues In Science Education, 40, 21–36. Dordrecht: Springer.
Wilkerson-Jerde, M., & Wilensky, U. (2011). How do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics. Educational Studies in Mathematics, 78, 21–43.
DOI: http://dx.doi.org/10.24127/ajpm.v10i2.3430
Refbacks
- There are currently no refbacks.