UJI VALIDITAS DAN RELIABILITAS KONSTRUK INSTRUMEN TES KEMAMPUAN OPERASI HITUNG BILANGAN BULAT MENGGUNAKAN CFA

Taufik Ariyanto^{1*}, Herwin², Hieronimus Sujati³

 1*,2,3 Universitas Negeri Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia

*Corresponding author. Jl. Colombo No. 1, Yogyakarta, 55281

E-mail: <u>taufikariyanto.2022@student.uny.ac.id</u>1)

herwin89@uny.ac.id²⁾
sujati@uny.ac.id³⁾

Received 29 March 2023; Received in revised form 02 June 2023; Accepted 20 September 2023

Abstrak

Instrumen tes perlu dirancang untuk mengukur tingkat kemampuan operasi hitung bilangan bulat. Namun belum banyak instrumen tes yang valid dan reliabel. Riset ini tujuannya guna melakukan pengujian reliabilitas dan validitas konstruk instrumen tes objektif kemampuan operasi hitung bilangan bulat yang dikembangkan. Penelitian ini mempergunakan 274 responden secara acak dari pelajar kelas VI SD (Sekolah Dasar) di Kecamatan Wedi Kabupaten Klaten. Data pengujian validitas dan reliabilitas dianalisis dengan CFA tingkat dua (second order confirmatory factor analysis) memakai perangkat lunak LISREL 8.80. Hasil riset memperlihatkan bahwasanya instrumen tes objektif kemampuan operasi hitung bilangan bulat tersusun atas 4 aspek kemampuan operasi hitung bilangan bulat yaitu penjumlahan, pengurangan, perkalian, dan pembagian bilangan bulat. Keempat aspek tersebut dikembangkan menjadi indikator yang terdiri dari 16 butir pertanyaan pilihan ganda. Hasil riset menunjukkan bahwasanya instrumen tes objektif kemampuan operasi hitung bilangan bulat yang dianalisis memenuhi kriteria goodness of fit, validitas konvergen, validitas diskriminan, dan reliabilitas konstruk. Oleh karena itu pengembangan instrumen pengujian layak dipakai untuk mengukur kemampuan operasi hitung bilangan bulat pelajar kelas VI SD (Sekolah Dasar).

Kata kunci: Analisis faktor konfirmatori, reliabilitas konstruk, tes kemampuan operasi hitung bilangan bulat, validitas konstruk.

Abstract

The test instrument needs to be designed to measure the level of integer arithmetic operations. However, there are not many valid and reliable test instruments. The aim of this research is to test the reliability and validity of the construct instrument for testing the ability to operate on integers that has been developed by the researcher. This study used 274 random respondents from grade VI elementary school students in Wedi District, Klaten Regency. Data were analyzed by second order CFA (2nd order confirmatory factor analysis) using LISREL 8.80 software. The research results show that the objective test instrument for integer arithmetic operations is composed of 4 aspects of integerarithmetic operations, namely addition, subtraction, multiplication, and division of integer. These four aspects were developed into indicators consisting of 16 multiple choice questions. The research results show that the objective test instrument ability for integer arithmetic operations meets the criteria of goodness of fit, convergent validity, discriminant validity, and construct reliability. Therefore the development of testing instruments is feasible to use to measure the ability to operate on integers of grade VI elementary school student.

Keywords: Confirmatory factor analysis, construct reliability, construct validity, integer arithmetic operations ability test

This is an open access article under the **Creative Commons Attribution 4.0 International License**

PENDAHULUAN

Mata pelajaran matematika ialah satu diantara mata pelajaran dasar yang terdapat di SD (Sekolah Dasar). Tahapan materi yang diajarkan dalam matematika yakni geometri, bilangan, pengukuran, serta pengolahan data. Salah satu materi yang harus dikuasi dalam bilangan yaitu bilangan bulat. Kemampuan operasi hitung bilangan tersusun atas pengurangan, penjumlahan, pembagian, perkalian, serta operasi hitung campuran. Muhsin (2012)memaparkan bahwasanya bilangan bulat ialah bilangan penuh yang tersusun atas bilangan bulat positif (1, 2, 3,...), bilangan 0 serta bilangan negatif -2, -2,3,...). bulat (-1,Pemahaman tentang operasi hitung bilangan bulat menjadi sangat penting untuk dipahami peserta didik karena tergolong pondasi ataupun dasar agar mengartikan konsep-konsep dapat matematika yang lainnya (Arifuddin & Arrosvid, 2017). Sehingga, begitu krusial untuk seorang pengajar guna terus memastikan muridnya sungguhsungguh memahami serta mengerti konsep operasi hitung bilangan bulat secara benar.

mempersiapkan Guru perlu penilaian guna melakukan pengukuran kemampuan pelajar dalam operasi bilangan hitung bulat. Penilaian merupakan komponen penting dalam proses pembelajaran (Clements & Cord, Penilaian tersebut 2013). mengidentifikasi dan mengevaluasi kelebihan dan kekurangan siswa. menilai proses belajar siswa, memantau dan memberikan umpan balik terhadap kemajuan siswa. Oleh karena itu, instrumen penilaian bagi guru sangat dibutuhkan.

Berdasarkan permasalahan tersebut, dibutuhkan peralatan pengukuran dan skala yang reliabel dan valid.

Instrumen yang akan dikembangkan dijalankan pengujian reliabilitas dan validitas secara konstruk. Validitas konstruk berpedoman terhadap kualitas instrumen yang dipakai apakah telah sungguh-sungguh mendeskripsikan konstruk teoritis yang dipakai menjadi pokok operasionalisasi atau belum. Prosedur validasi konstruk diawali sebuah penggambaran serta pembatasan perihal variabel yang akan dilakukan pengukuran serta dipaparkan berbentuk konstruk logis sesuai teori perihal variabel tersebut (Retnawati, 2016).

Kebaharuan penelitian ini terletak pada pengembangan instrumen kemampuan operasi hitung bilangan bulat yang valid dan reliabel. Instrumen diuji validitas dan reliabilitasnya secara konstruk. Validitas konstruk digunakan menilai seberapa menerjemahkan teori yang digunakan ke dalam instrumen yang digunakan. Membuktikan validitas konstruk dapat dilakukan dengan analisis Confirmatory Factor Analysis (CFA) sebagai salah satu pendekatan dalam analisis faktor yang digunakan dalam menguji seberapa baik variabel-variabel yang diukur dapat mewakili faktor atau konstruk yang disusun sebelumnya. Pengujian ini berguna untuk mengukur model (model *measurement*) agar dapat menggambarkan aspek-aspek indikator-indikator sebagai cerminan dari variabel laten yaitu kemampuan operasi hitung bilangan bulat dengan melihat *loading factor* dari setiap aspek yang membentuk suatu konstruk. CFA juga berguna untuk menguji validitas konstruk dan reliabilitas konstruk dari item-item yang membentuk konstruk laten (Elfida, Milla, Mansoer, & Takwin, 2021).

CFA yang digunakan dalam penelitian ini adalah *second order confirmatory factor analysis* yaitu

model yang pengukurannya memiliki dua tingkat. Analisis tingkat pertama dilakukan dari konstruk laten aspek terhadap masing-masing indikatornya dan analisis tingkat kedua dilakukan dari konstruk laten terhadap konstruk aspeknya (Sholahuddin et al., 2022; Pislae & Petsangsri, 2020). Tujuan penelitian ini untuk menguji instrumen kemampuan operasi hitung bilangan bulat yang memenuhi validitas konstruk dan reliabilitas. Validitas konstruk meliputi validitas konvergen dan diskriminan. Uji instrumen tersebut menggunakan Confirmatory Factor Analysis berbantuan software Lisrel 8.80.

METODE PENELITIAN

Penelitian menggunakan ini pendekatan kuantitatif yang tujuannya untuk melakukan pengembangan serta melakukan validasi produk pendidikan. Produk penelitian ini ialah instrumen tes kemampuan operasi hitung bilangan bulat yang memenuhi kriteria validitas dan reliabilitas. Prosedur penelitian diadaptasi dari teori yang dikembangkan oleh Gable & Wolf (2012) yang melibatkan 13 langkah sebagai berikut: mengidentifikasi masalah kebutuhan penelitian, 2) menentukan variabel, 3) meninjau studi komprehensif tentang kemampuan operasi hitung bilangan bulat, 4) menulis definisi konseptual dan operasional, 5) menyusun indikator, 6) memilih instrumen, 7) merancang cetak biru, 8) menulis item berdasarkan cetak biru, 9) melakukan validasi isi secara kualitatif dan kuantitatif oleh beberapa ahli, 10) merevisi butir soal berdasarkan saran ahli, 11) melakukan uji lapangan empiris, 12) melakukan analisis vali-ditas reliabilitas dengan CFA (confirmatory factor analysis) memakai aplikasi LISREL 8.80 dan 13) merancang instrumen akhir.

Kecocokan model dalam analisis faktor dipengaruhi oleh kecukupan sampel yang digunakan (Ab Hamid, Sami, & Sidek, 2017). Oleh karena itu, diperlukan pertimbangan dalam penggunaan kecukupan sampel. Penggunaan partisipan yang lebih dari 100 atau lima kali jumlah item yang dianalisis dapat dilakukan sebagai upaya mendapatkan data yang valid dalam analisis faktor (Koran, 2016); Kyriazos & others, 2018). Berdasarkan pandangan tersebut, untuk memenuhi kategori baik sampel yang dilibatkan dalam penelitian berjumlah 274 responden yang dipilih secara acak dari siswa sekolah dasar di Kabupaten Klaten.

Brown & Moore (2012), Hatcher & O'Rourke (2013) menyatakan bahwa CFA cocok untuk menentukan validitas konstruk dan reliabilitas instrumen. Selain itu, Sujati & Gunarhadi (2020) mengungkapkan bahwa CFA dapat digunakan untuk menguji tidak hanya validitas konstruk, tetapi juga reliabilitas konstruk.

Variabel yang diteliti dalam penelitian ini kemampuan adalah operasi hitung bilangan bulat. Variabel kemampuan operasi hitung bilangan bulat difokuskan pada pelajar SD. Pada riset berikut, variabel ini diukur dengan empat aspek dan 16 item pengukuran. Keempat aspek tersebut meliputi; penjumlahan, pengurangan, perkalian, dan pembagian. Setiap aspek diukur dengan empat item.

Pengumpulan data dilakukan dengan mengerjakan tes menggunakan instrumen tes kemampuan operasi hitung bilangan bulat. Data diperoleh dari 274 partisipan vang telah mengerjakan instrumen tes. Selanjutnya, teknik analisis data yang digunakan dalam penelitian ini adalah Confirmatory Factor Analysis (CFA). Untuk analisis tersebut digunakan

software LISREL 8.80. Dalam Confirmatory Factor Analysis memiliki variabel laten dan variabel indikator, variabel laten sebagai variabel yang tidak bisa dibentuk dan dikonstruksikan secara langsung, sedangkan variabel indikator sebagai variabel yang bisa diamati dan diukur langsung (Lei & Shiverdecker, 2020; Selomo et al., 2019).

HASIL DAN PEMBAHASAN

Produk dari penelitian ini berupa instrumen tes yang melalui 13 langkah dalam prosedur penelitiannya yang diadaptasi dari Gable & Wolf (2012). Langkah pertama dalam pengembangan produk ini adalah mengidentifikasi masalah dan kebutuhan penelitian. adalah belum Hasilnya adanya instrumen tes yang layak digunakan untuk mengukur kemampuan operasi hitung bilangan bulat kelas VI sekolah dasar di Kabupaten Klaten. Selanjutnya Langkah kedua yaitu menentukan variabel. Pada tahap ini variabel yang diteliti yaitu kemampuan operasi hitung bilangan bulat. Langkah ketiga yaitu meninjau studi komprehensif tentang kemampuan operasi hitung bilangan bulat. Pada tahap ini dilakukan kajian literatur terkait variabel yang diteliti.

Langkah keempat yaitu menulis definisi konseptual dan operasional terkait kemampuan operasi hitung bilangan bulat. Berdasarkan definisi konseptual dan operasional disimpulkan bahwa kemampuan operasi hitung bilangan bulat yaitu kesanggupan yang dimiliki oleh peserta didik untuk menguasai operasi hitung bilangan bulat cacah dan bilangan bulat negatif. menyusun Langkah kelima yaitu indikator. Pada langkah ini dirumuskan dapat mengukur indikator yang kemampuan operasi hitung bilangan bulat.

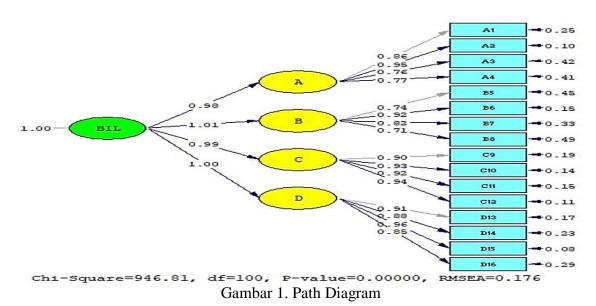
Langkah keenam yaitu memilih Instrumen yang dipilih instrumen. berupa instrumen tes berbentuk pilihan ganda. Langkah ketujuh vaitu merancang cetak biru yang memuat variabel yang diteliti dan faktor/ aspeknya. Pada tahap ini didapatkan 4 faktor/aspek yang merupkan variabel kemampuan operasi hitung bilangan bulat, yaitu penjumlahan, pengurangan, perkalian, dan pembagian. Langkah kedelapan yaitu menulis item berdasarkan cetak biru. Item merupakan indikator yang akan dikembangkan menjadi sebuah soal dalam instrumen tes.

Langkah ke sembilan melakukan validasi isi secara kualitatif dan kuantitatif oleh beberapa ahli. Langkah ke sepuluh yaitu merevisi butir soal berdasarkan saran ahli. Langkah ke sebelas yaitu melakukan uji lapangan empiris. Ins-trumen tes diujikan ke 274 responden secara acak terhadap siswa kelas 6 SD di kabupaten Klaten. Setelah dilakukan uji lapangan empiris, langkah selanjut-nya adalah melakukan analisis validitas dan reliabilitas dengan CFA (confir-matory factor analysis) memakai aplikasi LISREL 8.80. Setelah diuji kevalidan dan reliabilitasnya tahap terakhir adalah merancang instrumen akhir berdasarkan hasil uji validitas dan reliabilitasnya.

Loading Faktor

Dua hasil analisis faktor konfirmatori tingkat dua adalah penentuan loading faktor (λ) setiap item dan faktor yang megembangkan tiap aspek. Pada riset ini diberikan 4 faktor atau aspek yang terdiri dari 16 item atau butir soal. Setelah dilakukan analisis loading faktor menunjukkan bahwa semua item dinyatakan valid. Tabel 1 menunjukkan loading faktor setiap aspek dan itemitemnya.

Tabel 1. Loading faktor dan item


Faktor/Aspek	Nomor item	Indikator	λ	Λ
Penjumlahan (A)	A1	Tentukan hasil operasi aritmatika bilangan bulat dalam soal cerita.	0,86	0,98
	A2	Tentukan hasil operasi aritmatika dengan menambahkan bilangan bulat negatif ke garisbilangan.	0,95	
	A3	Tentukan operasi aritmatika untuk menjumlahkan bilangan bulat yang hasilnya diketahui.	0,76	
	A4	Disajikan operasi hitung penjumlahan yang terdiri dari dua suku, yang merupakan bilangan bulat positif dan/atau bilangan bulat negatif, masing – masing suku dua digit, peserta didik mampu menentukan hasilnya.	0,77	
Pengurangan (B)	В5	Temukan hasil operasi aritmatika pengurangan bilangan bulat dalam soal cerita.	0,74	1,01
	В6	Temukan hasil operasi aritmatika untuk mengurangkan bilangan bulat negatif pada garis bilangan.	0,92	
	В7	Tentukan operasi untuk menghitung pengurangan bilangan bulat yang hasilnya diketahui.	0,82	
	B8	Disajikan operasi hitung pengurangan yang terdiri dari dua suku, yang merupakan bilangan bulat positif dan/atau bilangan bulat negatif, masing — masing suku dua digit, peserta didik mampu menentukan hasilnya.	0,71	
Perkalian(C)	C9	Temukan hasil operasi perkalian aritmatika bilangan bulat dalam soal cerita.	0,9	0,99
	C10	Temukan hasilnya dengan mengalikan bilangan bulat positif dengan bilangan bulat positif.	0,93	
	C11	Temukan hasilnya dengan mengalikan bilangan bulat negatif dengan bilangan bulat negatif.		
	C12	Disajikan operasi perkalian bilangan bulat positif dengan bilangan bulat negatif dua suku, masing – masing suku terdiri dari dua digit, peserta didik mampu menentukan hasilnya.	0,94	
Pembagian(D)	D13	Temukan hasil operasi aritmatika pembagianbilangan bulat dalam soal cerita.	0,91	1,00
	D14	Temukan hasilnya ketika bilangan bulat positifdibagi dengan bilangan bulat positif.		
	D15	Temukan hasil pembagian bilangan bulat negatif dengan bilangan bulat negatif.		
	D16	Disajikan operasi pembagian bilangan bulat positif dengan bilangan bulat negatif dua suku, masing – masing suku terdiri dari dua digit, peserta didik mampu menentukan hasilnya.	0,85	

Berdasarkan Tabel 1 dapat dilihat bahwa loading faktor (λ) setiap item lebih dari 0,50. Sujati (2021)

mengklaim bahwa pemuatan faktor $\lambda 0,50$ secara praktis signifikan. Suatu butir dinyatakan valid terhadap faktornya

jika memiliki muatan faktor ≥0,50. Berdasarkan hasil CFA tingkat dua sebagaimana yang diperlihatkan dalam tabel 1, ditemukan bahwa semua item dan faktor menunjukkan pemuatan

faktor > 0,5. Hasil dari semua item dan faktor secara praktis signifikan dan layak untuk digunakan dalam pengumpulan data.

Berdasarkan gambar 1 menunjukkan Path Diagram yang menampilkan hasil loading faktor hasil pengolahan LISREL 8.80. Setiap butir/item dinyatakan signifikan karena loading faktornya (λ) lebih dari 0,50.

Validitas Konstruk

Validitas konstruk mengacu pada sejauh mana skor pengukuran mencerminkan konstruk laten yang akan diukur. Sujati (2021) mendefinisikan konstruk validitas sebagai pendekatan untuk memastikan bahwa sekumpulan variabel merepresentasikan konstruk laten teoretis yang sedang diukur. Agarwal (2013) mencatat bahwa validitas konstruk analisis konfirmatori mencakup dua uji utama, yakni pengujian validitas diskriminan dan validitas konvergen. Validitas konvergen dan diskriminan merupakan persyaratan penting pada setiap pengembangan instrumen untuk mendapatkan data yang dapat dipertanggungjawabkan

secara psikometrik. Dengan demikian, penelitian ini melaporkan validitas diskriminan dan konvergen.

Validitas Konvergen

Validitas konvergen mengacu pada sejauh mana konstruk serupa diukur dengan variabel yang berbeda. Dengan kata lain, validitas konvergen memastikan bahwa variabel termasuk dalam konstruk laten yang akan diukur (Wang, French, & Clay, 2015). Validitas konvergen didasarkan pada korelasi antara respon variabel yang berbeda dalam mengukur konstruk yang sama. Selanjutnya, variabel harus sangat berkorelasi dengan konstruk laten.

Besarnya loading faktor menjadi mendasar pertimbangan dalam menentukan konvergen validitas (Sujati, 2021) Suatu variabel dikatakan baik jika variabel latennya menunjukkan faktor loading λ0,50. Sujati (2021)merekomendasikan average variance extract (AVE)

sebagai ukuran validitas konvergen karena AVE dapat menjelaskan sejauh mana item dibagi antara konstruk dalam model persamaan struktural (SEM) di mana AVE 0,5 atau lebih dapat diterima sebagai validitas konvergen.

Pengembangan skala dalam penelitian ini melibatkan empat faktor yaitu pengurangan, penjumlahan, pembagian, dan perkalian bilangan bulat. Bersumber data penelitian, hasil analisis validitas konvergen dapat diuraikan pada Tabel 2.

Tabel 2. Validitas Konvergen

Faktor	Butir	λ	λ^2	$1-\lambda^2$	AVE
A	A1	0,86	0,7396	0,2604	0,70315
	A2	0,95	0,9025	0,0975	
	A3	0,76	0,5776	0,4224	
	A4	0,77	0,5929	0,4071	
Jumlah		3,34	2,8126	1,1874	
В	B5	0,74	0,5476	0,4524	0,642625
	B6	0,92	0,8464	0,1536	
	B7	0,82	0,6724	0,3276	
	B8	0,71	0,5041	0,4959	
Jumlah		3,19	2,5705	1,4295	
С	C9	0,9	0,81	0,19	0,851225
	C10	0,93	0,8649	0,1351	
	C11	0,92	0,8464	0,1536	
	C12	0,94	0,8836	0,1164	
Ju	Jumlah		3,4049	0,5951	
D	D13	0,91	0,8281	0,1719	0,81165
	D14	0,88	0,7744	0,2256	
	D15	0,96	0,9216	0,0784	
	D16	0,85	0,7225	0,2775	
Jumlah		3,6	3,2466	0,7534	

Berdasar pada Tabel 2, keseluruhan konstruk melampaui nilai $AVE \geq 0,50$, maka disimpulkan bahwa faktor tersebut dapat mengukur variabel laten. Oleh karena itu, faktor-faktor tersebut dapat dinyatakan valid secara konvergen.

Validitas Diskriminan

Uji validitas diskriminan merupakan syarat dalam pengem-bangan instrumen yang melibatkan variabel laten (Ab Hamid et al., 2017). Validitas diskriminan yang juga mengacu pada validitas divergen (DeVellis, 2017) berarti dua konsep harus menunjukkan perbedaan yang signifikan secara konseptual. Uji validitas diskriminan bertujuan untuk membuktikan bahwa satu konstruk sangat berbeda dengan konstruk lainnya (Voorhees, Brady, Calantone, & Ramirez, 2016). Validitas diskriminan mengungkapkan sejauh mana suatu konstruk dibedakan dari konstruksi lain dalam suatu model (Hair et al., 2019).

Uji validitas diskriminan memiliki tujuan membuktikan bahwa satu konstruk sangat berbeda dengan konstruk yang lain (Voorhees *et al.*, 2016). Validitas diskriminan mengungkapkan sejauh mana suatu konstruk

dibedakan dari konstruksi lain dalam suatu model. Satu konstruk laten tidak boleh memiliki korelasi yang tinggi dengan konstruk lainnya (Jauk & Ehrenthal, 2021). Validitas diskriminan terpenuhi jika variabel laten menunjukkan lebih banyak varians pada variabel indikator terkait daripada berbagi dengan konstruk lain dalam model yang sama (Roemer, Schuberth, & Henseler, 2021).

Validitas diskriminan menegaskan bahwa setiap konstruk laten adalah unik. Dengan kata lain, satu konstruk laten tidak boleh berkorelasi tinggi dengan konstruk lainnya (Zait & Bertea, 2011). Hal ini terpenuhi ketika dua konstruk laten tidak berkorelasi secara teoritis dan empiris terbukti dari skor yang menunjukkan satu konstruk lebih tinggi dari yang lain. Hasil analisis korelasi antar konstruk menggunakan aplikasi SPSS Statistic 24.0 Windows disajikan pada Tabel 3.

Tabel 3. Validitas Diskriminan

	Penjumlahan	Pengurangan	Perkalian	Pembagian
Penjumlahan	0,839			
Pengurangan	0,718	0,802		
Perkalian	0,782	0,765	0,923	
Pembagian	0,801	0,783	0,889	0,901

Hasil yang disajikan pada Tabel 3 menginformasikan bahwa keempat konstruk laten masing- masing memiliki akar kuadrat dari AVE: 0,839, 0,802, 0,923, dan 0,901. Akar kuadrat AVE dari empat konstruk laten lebih besar daripada korelasi antar konstruk. Secara meyakinkan, keempat konstruk laten telah memenuhi kriteria validitas diskriminan.

Reliabilitas Konstruk

Selanjutnya adalah uji reliabilitas konstruk. Hal ini dilakukan untuk mengetahui konsistensi instrument tes kemampuan operasi hitung bilangan bulat. Brown (2015) merujuk reliabilitas pada konsistensi hasil pengukuran. Margono (2015) mengemukakan bahwa suatu instrumen dapat diandalkan jika dapat mengukur fenomena yang sama berulang kali, namun memberikan hasil yang relatif konsisten. Penelitian ini melaporkan satu jenis reliabilitas, yaitu reliabilitas konstruk.

Retnawati (2018) menjelaskan reliabilitas konstruk (CR) merupakan ukuran konsistensi internal dari variabel-variabel yang mewakili konstruk laten yang akan diukur. Reliabilitas konstruk ialah ukuran bagaimana konsistensi secara internal setiap variabel yang mewakili konstruk laten yang akan diukur (Malcolm, Mavhunga, & Rollnick. 2019). Reliabilitas konstruk digunakan untuk mengukur seberapa jauh cakupan variable yang mendasari konstruk dalam model persamaan disajikan struktural (Cheung, Cooper-Thomas, Lau, & Wang, 2023). Reliabilitas konstruk dapat diperkirakan setelah validitas konstruk dibuktikan dengan confirmatory factor analysis berdasarkan analisis loading factor, dari tersebutlah selanjutnya faktor reliabilitas konstruk diperkirakan, koefisien reliabilitas konstruk lebih tinggi dari 0,70 dapat diterima (Nagsyahbandi & Prodjosantoso, 2023).

Koefisien yang tinggi menunjukkan konsistensi internal yang tinggi, hal tersebut hanya mungkin jika setiap variabel secara konsisten mengukur konstruk laten yang sama (Sujati & Gunarhadi, 2020). Hasil analisis reliabilitas konstruk dapat diuraikan pada Tabel 4.

Tabel 4. Hasil analisis reliabilitas konstruk

	1	. 2	1 12	
Item	λ_i	λ_i^2	$1-\lambda_i^2$	ω
A1	0,86	0,74	0,26	0,98
A2	0,95	0,90	0,10	
A3	0,76	0,58	0,42	
A4	0,77	0,59	0,41	
B5	0,74	0,55	0,45	
B6	0,92	0,85	0,15	
B7	0,82	0,67	0,33	
B8	0,71	0,50	0,50	
C9	0,90	0,81	0,19	
C10	0,93	0,86	0,14	
C11	0,92	0,85	0,15	
C12	0,94	0,88	0,12	
D13	0,91	0,83	0,17	
D14	0,88	0,77	0,23	
D15	0,96	0,92	0,08	
D16	0,85	0,72	0,28	
Σ	13,82		3,97	

Tabel menunjukkan hasil analisis reliabilitas konstruk berdasarkan koefisien muatan faktor Berdasarkan tabel 4 indikator secara keseluruhan. Berdasarkan hasil analisis diperoleh koefisien omega sebesar 0,98. Merujuk pada kriteria yang digunakan yaitu nilai koefisien reliabilitas konstruk lebih dari 0,70 dapat disimpulkan bahwa instrumen tes kemampuan operasi hitung bilangan adalah reliabel dan bulat layak digunakan.

KESIMPULAN DAN SARAN

Berdasarkan pembahasan, disimpulkan bahwa empat faktor atau aspek: penjumlahan, pengurangan, perkalian, dan pembagian yang dirancang secara teoritis untuk mengembangkan

instrument tes kemampuan operasi hitung bilangan terbukti memenuhi kriteria valid, baik dilihat dari loading faktor, validitas konvergen, dan juga diskrimintaif. Selain validitas instrumen tersebut telah memenuhi kriteria reliabilitas konstruk dan dinyatakan reliabel. Oleh karena itu, instrumen yang dikembangkan layak digunakan dalam mengumpulkan data untuk mengukur kemampuan operasi hitung bilangan bulat siswa kelas VI SD.

Untuk penelitian selanjutnya dalam penyusunan instrumen tes yang layak digunakan hendaknya diuji validitasnya dan juga reliabilitasnya agar instrumen tes tersebut mampu mengukur indikator yang ingin dicapai.

DAFTAR PUSTAKA

Ab Hamid, M. R., Sami, W., & Sidek, M. H. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. *Journal of Physics: Conference Series*, 890(1), 12163.

Agarwal, V. (2013). Investigating the convergent validity of organizational trust. *Journal of Communication Management*, 17(1), 24–39.

Arifuddin, A., & Arrosyid, S. R. (2017). Pengaruh metode demonstrasi dengan alat peraga jembatan garis bilangan terhadap hasil belajar matematika materi bilangan bulat. *Al Ibtida: Jurnal Pendidikan Guru MI*, 4(2), 165–178.

Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. Handbook of Structural Equation Modeling, 361, 379.

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2023). Reporting reliability, convergent

- and discriminant validity with structural equation modeling: A review and best-practice recommendations. *Asia Pacific Journal of Management*, 1–39.
- Clements, M. D., & Cord, B. A. (2013).

 Assessment guiding learning: developing graduate qualities in an experiential learning programme. Assessment & Evaluation in Higher Education, 38(1), 114–124.
- DeVellis, R. F. (2017). An overview of item response theory. Scale Development: Theory and Applications. Fourth Ed. Los Angeles: SAGE Publications, Inc, 213–224.
- Elfida, D., Milla, M. N., Mansoer, W. W. D., & Takwin, B. (2021). Adaptasi dan uji properti psikometrik The PERMA-Profiler pada orang Indonesia. *Persona: Jurnal Psikologi Indonesia*, 10(1), 81–103.
- Hair, J.P., Black, J.P., Babin, J.P., & Anderson, R. . (2019). *Multivariate Data Analysis, Eighth Edition.* Harlow: Cengage Learning.
- Hatcher, L., & O'Rourke, N. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling. SAS institute.
- Jauk, E., & Ehrenthal, J. C. (2021). Self-reported levels of personality functioning from the operationalized psychodynamic diagnosis (OPD) system and emotional intelligence likely assess the same latent construct. *Journal of Personality Assessment*, 103(3), 365–379.
- Koran, J. (2016). Preliminary proactive sample size determination for confirmatory factor analysis

- models. Measurement and Evaluation in Counseling and Development, 49(4), 296–308.
- Kyriazos, T. A., & others. (2018).

 Applied psychometrics: sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. *Psychology*, 9(08), 2207.
- Lei, P.-W., & Shiverdecker, L. K. (2020). Performance of estimators for confirmatory factor analysis of ordinal variables with missing data. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 584–601.
- Malcolm, S. A., Mavhunga, E., & Rollnick, M. (2019). The validity and reliability of an instrument to measure physical science teachers' topic specific pedagogical content knowledge in stoichiometry. *African Journal of Research in Mathematics, Science and Technology Education*, 23(2), 181–194.
- Muhsin, A. (2012). *Mengenal Bilangan Bulat dan Operasinya*. PT Balai
 Pustaka (Persero).
- Naqsyahbandi, F., & Prodjosantoso, A. K. (2023). Instrumental Analysis of Student Perceptions of Chemistry Learning with the STEM Approach at the end of the Covid-19 Pandemic using Second Order Confirmatory Factor Analysis. *Jurnal Penelitian Pendidikan IPA*, 9(3), 1480–1485.
- PISLAE, K., & PETSANGSRI, S. (2020). The Development of Media Literacy for Undergraduate Students: A Second Order Confirmatory Factor Analysis. *Revista ESPACIOS*, 41(11).
- Retnawati, H. (2016). Analisis kuantitatif instrumen penelitian (panduan peneliti, mahasiswa,

- dan psikometrian). Parama publishing.
- Retnawati, H. (2018). Validitas dan reliabilitas konstruk skor tes kemampuan calon mahasiswa. *Jurnal Ilmu Pendidikan*, 23(2).
- Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2--an improved criterion for assessing discriminant validity in structural equation modeling. *Industrial Management & Data Systems*, 121(12), 2637–2650.
- Selomo, M., Mallongi, A., Birawida, A. B., Arsyad, M., & others. (2019). Confirmatory Factor Analysis Model of Solid Waste in Small Island Makassar City. *Indian Journal of Public Health Research & Development*, 10(1).
- Sholahuddin, M., Abdullah, M. A., Barom, M. N., Tahir, I. N., & others. (2022). Dimensions of Islamic business coaches' role: A second order confirmatory factor analysis (CFA). In *Contemporary Research on Management and Business* (pp. 152–155). CRC Press.
- Sujati, H. (2021). Assessing the discriminant validity of the curiosity scale using confirmatory factor analysis. In *Educational Innovation in Society 5.0 Era: Challenges and Opportunities* (pp. 60–63). Routledge.
- Sujati, Heronemus, & Akhyar, M. (2020). Testing the construct validity and reliability of curiosity scale using confirmatory factor analysis. *Benefits*.
- Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: an analysis, causes for concern, and proposed remedies. *Journal of the Academy*

- of Marketing Science, 44, 119–134.
- Wang, X., French, B. F., & Clay, P. F. (2015). Convergent and discriminant validity with formative measurement: A mediator perspective. *Journal of Modern Applied Statistical Methods*, 14(1), 83–106.
- Zai\ct, A., & Bertea, P. (2011). Methods for testing discriminant validity. *Management & Marketing Journal*, 9(2), 217–224.