UNLEASHING HIDDEN POTENTIALS: THE EFFECTS OF SELF-RECORDING IN LANGUAGE ASSESSMENT

by

Hieronimus Canggung Darong
Universitas Katolik Indonesia Santu Paulus Ruteng
hieronimusdarong@gmail.com

(Article History Received: 12-11-2023; Reviewed1: 10-01-2024; Reviewed2: 29-01-2024; Accepted: 30-01-2024; Published: 01-02-2024)

Abstract:
Self-recording is crucial to assessment as it empowers individuals, encourages reflective learning, and allows for a thorough language proficiency assessment. This study aimed to know the effects of self-recording in peer and self-assessment in language learning. This mixed-method research design with post-test control groups utilized speaking tests, rubrics, self-assessment checklists, interview guides, and teaching scenarios to collect data. Instrument preparation, validation, and reliability tests were all parts of rigorous data-gathering procedures. The participants were divided into control and experimental groups. Using stratified random sampling. Each group received different treatment, using self-recording for peer and self-assessment in the experimental group and traditional oral presentations in the control group. Speaking performances by students were recorded for self-and peer assessment, whereas the control group was assessed using a teacher's criteria. The post-test results showed that the experimental group fared much better than the control group, demonstrating the superior effectiveness of self-recording in enhancing speaking skills. In addition, the interview results confirmed that self-recording is meaningful for self-control, feedback, equity, and fairness. More importantly, the transformative power of self-recording in assessments highlights the critical function of self-recording in strengthening self-regulation abilities.

Keywords: self-recording; self-assessment; peer assessment; speaking

Abstrak:

Kata kunci: berbicara; self-recording; penilaian diri; penilaian sejawat

How to cite this article:
INTRODUCTION

The educational landscape includes two essential elements, self- and peer evaluation, which provide beneficial opportunities for learning, reflection, and feedback. These evaluation techniques encourage collaboration and the development of critical thinking abilities while empowering students to take an active role in their educational journeys (Black & Wiliam, 2018; Darong & Niman, 2021; Earl, 2013; Gitsaki & Robby, 2018; Herman, Osmundson, Dai, Ringstaff, & Timms, 2015; Seifert & Feliks, 2018; Widiastuti & Saukah, 2017; Wylie & Lyon, 2020). Self-assessment entails assessing people's knowledge, abilities, and competencies (Adachi, Tai, & Dawson, 2017). It encourages metacognitive skills, empowering students to keep track of and control their learning. Students can pinpoint their strengths and areas for development with the help of this reflective exercise (Panadero, Lipnevich & Broadbent, 2019; Panadero, Fernández-Ruiz, & Sánchez-Iglesias, 2020). Through performing self-assessment, students gain a sense of responsibility for their education, self-awareness, and ownership.

On the other hand, peer assessment describes how other students evaluate student work and performance. It is crucial for fostering cooperative learning and sharing ideas (Hoo, Deneen, & Boud, 2021; Seifert & Feliks, 2018). By engaging in peer assessment, students broaden their understanding of the material, increase their critical thinking abilities, and learn how to give helpful feedback through peer assessment. This approach promotes students' effective communication, teamwork, and empathy while establishing a collaborative learning environment (Alt & Raichel, 2020; Zheng, Cui, Li, & Huang, 2017; Zheng, Zhang, & Cui, 2019). Peer assessment provides students control over the assessment process so they can share responsibilities and voice their perspectives.

However, self-and peer assessment can pose difficulties that must be resolved. Researchers who have struggled with the issues at hand have raised this concern. In the context of peer assessment, students may find it difficult to appropriately evaluate their work due to prejudices or a lack of expertise. These students may experience significant social and mental stress (Zu, Zheng, & Tai, 2019). Additionally, when engaging in peer assessment, students frequently lack confidence in themselves and their peers, which contributes to their dissatisfaction with this assessment approach (Alt & Raichel, 2020; Alkhannani, 2021; Le, Janssen, & Wubbels, 2017). This mirrors the previous study of (Falchikov & Goldfinch, 2000), revealing that subjective evaluations and a lack of knowledge can affect peer assessment.

Volume 13 No 1, February 2024,
http://creativecommons.org/licenses/by/4.0
Therefore, giving students precise assessment standards, instructions, and training is essential to assure fairness and dependability.

Despite these challenges, previous research (Panadero & Brown 2017; Panadero, Jonsson, & Alqassab 2018) have thoroughly shown the benefits of peer assessment for lifelong learning. For instance, peer assessment has been linked to theories of self-regulated learning and co-regulation (Panadero et al., 2019; Panadero, Jonsson, & Strijbos, 2016). These scholars advocate for special attention to be given to assessment strategies. They focused on the importance of providing clear instructions on how teachers should mediate and model peer and self-assessment and how to use the students’ formative assessment. Students should be given rubrics at the beginning of a task to help them set acceptable goals. Rubrics are intended to evaluate the outcome of an activity (Panadero & Jonsson, 2013). By specifying the assessment criteria and the corresponding levels of quality for each criterion, rubrics outline the expectations for an assignment. They consist of three primary elements and are instruments for peer and self-assessment (Panadero, Alonso-Tapia, & Huertas 2012): (1) a checklist criteria that evaluates the task's goals, often developed jointly by teachers and students as statements outlining expected student performance for excellence; (2) a grading system to determine different levels of achievement; and (3) an explanation for each qualitative level. As a result, students can evaluate their work by comparing it to the requirements in the rubric. Rubrics are essential for establishing the construct validity of peer evaluation and increasing the dependability of assessment results. Their use encourages assessment transparency, facilitates feedback, increases student confidence, and aids self-regulation.

Furthermore, there are several advantages to self-and peer assessment. Self-assessment empowers students to identify their strengths and deficiencies without simply relying on criticism from others, increasing their independence and self-direction. Additionally, allowing students to see their development and establish attainable objectives per their self-evaluations improves motivation (Seifert & Feliks, 2018; Wanner & Palmer, 2018). On the other hand, Peer assessment develops social and interpersonal skills while encouraging active learning through exchanging ideas and perspectives. It motivates students to value many points of view, take responsibility for their learning, and get a deeper understanding of the material. Thus, if the students provided more thorough assessment and constructive criticism, their peers benefited.
more, increased their capacity to provide feedback and improve their work, and were able to improve their work to a greater extent.

It is crucial to note that when used for self-grading, self-assessment results can also serve a summative function (Panadero, Lipnevich, & Broadbent 2019). However, a core idea underlying self-assessment is that students interact with their learning process or results to express their perceived growth or accomplishments. In this way, self-assessment can be viewed as a procedure for formative assessment where students can assess and think back on the quality of their learning and work. This comprises assessing their work in light of specific objectives or standards, determining their strengths and weaknesses, and making necessary adjustments (Adarkwah, 2021; Ketabi, 2014; Wylie, 2020). All forms of evaluation, including self-assessment, consist of two fundamental components: setting expectations for performance and evaluating the performance’s quality in light of those expectations (Winstone & Boud, 2020). Therefore, students should be included in both areas when self-assessment is introduced (Panadero, Brown, & Courtney 2014; Panadero, Jonsson, & Botella 2017).

While the benefits and drawbacks of self- and peer-evaluation are well covered in the literature, there has been less investigation into how integrating recording tools might resolve some drawbacks and enhance the advantages of the assessment methods. As a result, empirical studies that focus on the precise effects of using the recording for self- and peer assessment are required. In this study, speaking skills are the primary concern. By addressing this research gap, teachers and researchers can better grasp the possible advantages and restrictions of recording tools to improve students' oral communication abilities and inform pedagogical practices in language classrooms. Then, the following research question is formulated:

Do students who are taught using self-recording for self and peer assessment achieve better speaking skills than those who are not?

METHOD

Design

The study employed an experimental research design with mixed methods to examine the research question thoroughly. A "Posttest-Only Control Group Design" includes the employment of a post-test to both a control and an experimental group after the employment treatment. By comparing the experimental group’s results to the control two groups, this design
makes it possible to assess the treatment's impact. This method is helpful to determine the causal relations between the independent variable and the dependent variable. In order to give a more thorough and nuanced understanding of the phenomena under investigation and a more comprehensive perspective on the research problem, the study combined quantitative and qualitative methodologies within a mixed-method framework. Combining quantitative and qualitative data improves the study's validity and robustness, which leads to a more comprehensive interpretation of the research findings.

Participant

198 students involved in the social, natural, and English sciences departments. The individuals in this population were in the same grade. They were already divided into classes according to their departments. The researcher used cluster random sampling due to the more significant population. The lottery method randomly picked two groups from each department for the sample selection process. These groups were then randomly assigned to either the experimental or control groups. To establish equality between the experimental and control groups, the sample was then put through a homogeneity and normality test using a t-test based on their speaking scores provided by their teachers using the statistical program SPSS. In order to gather more accurate information about using self-recording in assessment practice, interviews with the teachers were post-test conducted.

Instruments

The instruments employed in the current study were a speaking test (post-test), an analytical scoring rubric, a self-and peer assessment checklist, an interview guide, and a teaching scenario. The speaking test aims to gauge the student's development for the experiment. Students were given a specific topic to speak about that had not previously been assigned by the teacher, and they were then graded according to a rubric developed by Derksen. Such a rubric considers performance standards and content, organization, and language standards. The rubric consists of multiple scales that provide scores for various aspects of the performance rather than just one overall score.

Data collecting technique

The test items were tried before being used to confirm their validity and reliability. Furthermore, face validity was done to ensure the test contained no unclear items. Then, each
group received different treatments. The control group received instruction using the oral presentation, while the experimental group received instruction using the recording as a medium for self and peer assessment. The students were instructed to speak on particular subjects at each treatment. The students' speaking was then recorded, and they listened to these recordings to evaluate their performance. Peer assessment was used to judge the students' recorded speaking after they had finished their assessment. In this regard, the control group was assessed using the speaking assessment rubric created by the teacher.

Data analysis technique

The speaking test covered the experimental and control groups at the end of each treatment to determine the difference in the students' speaking achievement. By summing together each score and dividing by the total number of subjects, the mean score for each group was determined. Descriptive and inferential statistical analysis were used to calculate the post-test results for both classes. In order to adequately describe a distribution, descriptive analysis was performed using the following aspects: understanding the distribution's shape (graphic representation), indicators of its locations on the measurement scale, which serve to measure the central tendency, and measures of the distribution's dispersion (mean, median, mode, and range). The t-test was used to analyze the data in inferential statistical analysis. This test was carried out to see whether the variance is homogeneous and has a normal distribution. The parametric test was employed to compare the mean score due to the interval data. Finally, Levene's statistics test was administered to see whether the variance of the data was homogeneous.

RESULT AND DISCUSSION

Result

The groups' mean score and standard deviation were revealed by descriptive analysis. The obtained data were examined in this stage to determine the mean, median, mode, and standard deviation. The total sum of the scores across the distribution was divided by the total number of students participating in each group to gain the mean score. The case processing table was provided to confirm the valid number and percentage of the received data before descriptive analysis was performed, as follows:
The number and proportion of valid and missing cases are detailed in the case processing summary above. The information above can be used to determine that 39 samples were valid, and none were missing. This indicates that there were no data losses because everything has been processed. The mean score for the experimental and control groups is displayed in Table 2.

Table 2. The mean score and standard deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Descriptive Statistics</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td></td>
<td>77.59</td>
<td>78.50</td>
<td>74</td>
<td>6.731</td>
</tr>
<tr>
<td>Control Group (CG)</td>
<td></td>
<td>72.77</td>
<td>72.00</td>
<td>70</td>
<td>6.659</td>
</tr>
</tbody>
</table>

The table above demonstrates that the experimental group's (EG) mean score was more significant than the control group's (CG) mean score for each student. The experimental group's mean score was 77.79, while the control group's mean score was 72.77. Meanwhile, the experimental group's score or point, which is limited to half of the higher and lower frequency in a distribution (median), was 78.50 and 72.00 for the control group, respectively. The average score frequently appearing in the experimental group's distribution was 74, while 70 in the control group. As such, the table shows that the experimental group outperformed the control group in terms of standard deviation. The experimental group's standard deviation was 6.731, while the control groups was 6.659. Score frequencies for both groups are as follows:
Darong (2024)

Table 3. Score post-test of experimental group

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>5.1</td>
<td>7.7</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>2.6</td>
<td>10.3</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>5.1</td>
<td>15.4</td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>2.6</td>
<td>17.9</td>
</tr>
<tr>
<td>74</td>
<td>7</td>
<td>17.9</td>
<td>35.9</td>
</tr>
<tr>
<td>76</td>
<td>3</td>
<td>7.7</td>
<td>43.6</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>7.7</td>
<td>51.3</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>12.8</td>
<td>64.1</td>
</tr>
<tr>
<td>82</td>
<td>6</td>
<td>15.4</td>
<td>79.5</td>
</tr>
<tr>
<td>84</td>
<td>4</td>
<td>10.3</td>
<td>89.7</td>
</tr>
<tr>
<td>86</td>
<td>1</td>
<td>2.6</td>
<td>92.3</td>
</tr>
<tr>
<td>88</td>
<td>3</td>
<td>7.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

This table (Table 3) gives a clear overview of the distribution of post-test scores in the experimental group, allowing for analysis of central tendency, variability, and overall performance.

Figure 1. The histogram of the experimental group
Similarly, representing the data in a histogram (Figure 1) provides a visual aid for interpreting the distribution of post-test scores, allowing researchers to analyze central tendency, variability, and overall performance within the experimental group with greater clarity and insight.

<table>
<thead>
<tr>
<th>Score Post-test of Control Group</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid 60</td>
<td>3</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>2.6</td>
<td>2.6</td>
<td>10.3</td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>7.7</td>
<td>7.7</td>
<td>17.9</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
<td>5.1</td>
<td>5.1</td>
<td>23.1</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>20.5</td>
<td>20.5</td>
<td>43.6</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>7.7</td>
<td>7.7</td>
<td>51.3</td>
</tr>
<tr>
<td>74</td>
<td>4</td>
<td>10.3</td>
<td>10.3</td>
<td>61.5</td>
</tr>
<tr>
<td>76</td>
<td>7</td>
<td>17.9</td>
<td>17.9</td>
<td>79.5</td>
</tr>
<tr>
<td>78</td>
<td>2</td>
<td>5.1</td>
<td>5.1</td>
<td>84.6</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>5.1</td>
<td>5.1</td>
<td>89.7</td>
</tr>
<tr>
<td>82</td>
<td>2</td>
<td>5.1</td>
<td>5.1</td>
<td>94.9</td>
</tr>
<tr>
<td>88</td>
<td>2</td>
<td>5.1</td>
<td>5.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

This table (Table 4) provides valuable information about the distribution of post-test scores in the control group, enabling researchers to analyze performance trends and compare them with other study groups.

![Histogram](image)

Figure 2. The histogram of control group
When data are demonstrated to have a normal distribution and homogeneity of variance, inferential analysis employing parametric tests is appropriate. The data were tested for normality using the Kolmogorov-Smirnov statistic, and the homogeneity of variance was examined using the Levene statistics test. The following description shows the results of the data analysis in terms of tests for normality and homogeneity of variance.

In the tests for normality, as shown in Table 5, each group's significance value (sig) was more significant than 0.05. The EG's tests of normality had a significant value of .114. The CG obtained a significant value of .200. These findings indicate that the data were regularly distributed.

Table 6 shows the results of the homogeneity of variance test, in which the significance value (sig.) was more significant than 0.05. In this context, it was discovered that the significant values were as follows: .838 for the mean, .869 for the median, .869 for the median with corrected degrees of freedom, and .868 for the trimmed mean. Thus, it can be argued that the variance between groups was already homogeneous.
Concerning the hypothesis, the parametric t-test was used after the data were regular and homogeneous. A t-test analysis was conducted to determine whether there was a significant difference between the two groups. Table 7 shows the results of the t-test analysis used to determine whether there was a significant difference between the two groups.

Table 7. Group statistics

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST-TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>experiment</td>
<td>39</td>
<td>77.59</td>
<td>6.731</td>
<td>1.078</td>
</tr>
<tr>
<td>control</td>
<td>39</td>
<td>72.77</td>
<td>6.659</td>
<td>1.066</td>
</tr>
</tbody>
</table>

Finally, the results of the SPSS calculation reveal that the tobs was 3.180. It was higher than the tcv value of 1.96 (=0.05). It demonstrated that the null hypothesis (Ho) had been disproved. The null hypothesis was rejected, which indicates that there was a substantial difference between the two groups.

Table 8. Independent samples test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for equality of means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.042</td>
<td>.838</td>
<td>3.180</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>3.180</td>
<td>75.991</td>
<td>.002</td>
</tr>
</tbody>
</table>

In the meantime, the researcher collected three themes, six codes, and thirty-one excerpts.
Table 9 theme, code, and excerpts

<table>
<thead>
<tr>
<th>Theme(s)</th>
<th>Code(s)</th>
<th>Sample of the excerpt(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges and benefits</td>
<td>Challenges</td>
<td>“… What I found is that some students’ engagement in such tools is still poor. Ineffective interaction sometimes occurs.”</td>
</tr>
<tr>
<td></td>
<td>Benefits</td>
<td>“… The tool has the potential to help me in providing feedback. It is not mandatory for me to do an assessment. I can do it anytime and anywhere. Besides, students have self-awareness, personal growth, and self-regulated learning.”</td>
</tr>
<tr>
<td>Skills</td>
<td>Awareness</td>
<td>“I observe that students are highly aware of the importance of presentation skills without provoking their anxiety.”</td>
</tr>
<tr>
<td></td>
<td>preparation</td>
<td>“…Students were able to observe that certain delivery skills such as good preparation, self-confidence, eye contact, and voice quality needed improvement.”</td>
</tr>
<tr>
<td>Assessment</td>
<td>Equity</td>
<td>I use standardized evaluation criteria consistently for all students, mitigating the potential biases arising from varying observation conditions in traditional methods. It also promotes a collaborative learning environment.</td>
</tr>
<tr>
<td></td>
<td>Fairness</td>
<td>“…The transparency of recorded assessments guarantees accountability and maintains the integrity of the evaluation process. Students can review recordings multiple times, leading to more comprehensive and insightful feedback.”</td>
</tr>
</tbody>
</table>

Discussion

The study's research question is, do students who taught using self-recording for self and peer assessment achieve better speaking skills than those who did not? Therefore, the study aimed to determine whether there was a substantial difference between students' speaking achievement when using recording tools for self and peer assessment. For the data, students taught to use recordings for self and peer assessment performed better than those instructed to use oral presentations. Regarding the mean score, the post-test results indicated that the experimental group outperformed the control group. In addition, the interview results revealed that using the recording as a tool for self and peer assessment worked well to lessen the students' reliance on the teacher for their speaking performance. The control group, on the other hand, were lack of guidance and performance preparation. They relied more on the instructor and frequently lacked motivation due to their dread of making mistakes.
Furthermore, recording tools outperform traditional assessment methods in some respects. By allowing students to assess their performances, recording tools, in contrast to conventional approaches, increase objectivity by minimizing the potential bias by simply depending on memory. This feature amplifies the reliability of self-assessment, empowering individuals to evaluate their actions from an outer standpoint and promoting better self-awareness and personal growth. This is consistent with Asuncion and Encalada (2019), Ritchie (2016), and Tailab & Marsh (2020), who found that the use of video recording tools raised students' awareness of the value of presentation skills without making them anxious. Students could see that specific delivery techniques, such as thorough planning, self-assurance, eye contact, and voice quality, needed refinement (Yeh, Heng, & Tseng, 2020).

Recording tools also thrive because they allow for time-shifted assessment, which the traditional oral presentation technique does not. Unlike real-time evaluations, students can readily review their performances at their own pace. This feature is beneficial when a prompt assessment might not be feasible. Additionally, recording techniques help overcome geographic restrictions by enabling remote assessment. This aligns with (Zheng et al., 2017) saying that recording provides essential benefits in the current era of online learning and widespread connectivity. In addition, the research backs up the assertion made by Hager et al. (2020) that recording can help instructors save much time by removing the requirement to travel to a particular location at a specific time to perform field-based observations. Due to the flexibility of watching the video outside of regular school hours, supervisors can monitor more students. Teachers can act as supervisors because they are not required to be on-call during school hours.

Additionally, the recent study corroborates the viewpoints of Stark et al. (2023), who provide teachers with a thorough roadmap for navigating the actions and procedures of implementing video-based teaching. Similarly, a study by Shadiev, Yang, and Huang (2021) emphasized the integration of recording technology into evaluation methodologies and concentrated on the benefits of video recording in teaching. They suggested that using video-capturing tools could aid students in their academic progress. Furthermore, it enables teachers to assess students' communication abilities more objectively.

The use of recording tools has also considerably increased equity and fairness. They minimize the possible biases resulting from different observation settings in traditional approaches by consistently applying standardized evaluation criteria to all students.
Darong (2024)

recorded performances are easily shared, discussed, and learned from, peer assessment is also improved, fostering a more inclusive and collaborative learning environment. The accountability, engagement, and integrity of the evaluation process are maintained through the transparency of recorded assessments (Ryan et al., 2020). The iterative nature of recording tools emphasizes their advantages even further. Students can see recordings multiple times, resulting in more thorough and insightful feedback. The research supports the study of Ramos, Cattaneo, Jong, and Gonçalo (2022), who investigated how recorded feedback affected student engagement and group learning. The current study also closely resembles previous research by Hervas, Medina, and Sandín (2020), which examined the effects of video lessons on student engagement and attention. Because of this, this iterative method also facilitates tracking long-term development, enabling students to keep track of and celebrate their achievements over time, which is frequently inspiring and empowering. Additionally, recording tools lessen the stress of in-person evaluations, lowering performance anxiety and resulting in more genuine performances.

More importantly, self-recording in self and peer assessment significantly improves students’ self-regulation skills. Individuals get a profound capacity to set specific goals, track their progress, and make successful self-adjustments by documenting and assessing their actions. Beyond evaluation contexts, this newly acquired competence permeates many aspects of their lives. Additionally, this transition is supported by the drive for improvement fueled by the desire to perform well on recorded assessments. The current study emphasizes how self-recording acts as a dynamic stimulant for self-regulation, providing students with a crucial skill set supporting success in school, personal development, and adaptation in a constantly changing environment.

While this study corroborates previous findings of the advantages of recording assessments, Hager et al. (2020) and Prior (2011) highlighted the difficulties of employing such a method in classroom assessment. They emphasized that the lack of in-person engagement hampered students' capacity to communicate subtle expressions and cultural understanding through video recordings. This contrast accentuates the contextual particularity of recording tool effects. While it can improve objectivity in some assessment schemes, it might not always adequately capture the subtleties of real-time interactions. The biggest challenge for teachers and students in educational environments is handling technology. This disparity highlights the

Volume 13 No 1, Februari 2024,
http://creativecommons.org/licenses/by/4.0
complexity of recording tools' effects on various educational fields. Therefore, a thorough understanding of how recording tools affect assessment practice is essential.

Corroboration and contrast among studies call attention to the multifaceted nature of educational settings and highlight that while certain advantages might be applicable broadly, the impact can differ following the specific educational realm or learning goals. These insights highlight the necessity of a nuanced approach to the recording tool, considering its potential advantages and the particular contextual elements that may influence student engagement and learning results. It is crucial to recognize that these advantages come with drawbacks, such as privacy issues, technical problems, and the necessity for adequate participant training to use the recording tools, to put it another way. To fully utilize recording tools for self and peer assessment, it is essential to correctly balance these benefits and challenges. However, recording tools provide a multidimensional improvement over traditional methods by raising objectivity, flexibility, fairness, feedback quality, and the assessment process as a whole.

By and large, there are many advantages to adopting recording during self-and peer assessment. The first benefit is that it encourages impartiality by allowing students to review performances multiple times, ensuring that assessments are based on comprehensive knowledge rather than memory. As teachers can identify specific opportunities for improvement, accurate feedback becomes feasible. Reflecting on recorded performances aids in self-assessment and promotes self-awareness. Being free to watch recordings whenever it suits one's schedule is advantageous. Repeated viewings enable in-depth investigation of minute details, resulting in more thorough assessments. Depending on recorded evidence decreases bias, and constructive peer feedback becomes evidence based.

It is feasible to conduct remote assessments, and recorded data helps with grading and tracking progress while promoting responsibility and skill development. Despite some drawbacks, recording enhances assessment procedures by offering objectivity, thorough analysis, and helpful feedback, enabling growth, and learning for individuals and groups. The Transformative Power of Self-Recording in assessments captures its main idea: an investigation of how self-recording during assessments can operate as a potent catalyst for the growth and improvement of people's self-regulation skills. This strategy may develop previously untapped self-regulation abilities, resulting in positive changes and transformative personal growth in various circumstances, notably in education and self-evaluation.
CONCLUSION AND IMPLICATION

Conclusion

From the findings, it can be concluded that using the recording as a self and peer-assessment tool is an efficient method for teaching speaking. It increases students' self-confidence and lessens their reliance on the teacher. Additionally, it allows students to make modifications and assessments on their own and works well in assisting them in learning more contextually. In the meantime, teachers should be adaptive to the advantages and drawbacks of the tool in question. More importantly, understanding the impact's variation depending on educational level, topic area, and cultural concerns is essential because it calls for customized implementation.

Limitation

The findings of this study can be applied to particular student levels and language skills. It is suggested that further research studies might deal with this technique, exploring its enactment in teaching other language skills at other school levels to extend its potential in language teaching.

Implication

Incorporating recording technology into peer and self-assessments has enormous potential to improve student engagement, reflective learning, and objective assessments. By considering the study's findings, applying best practices, and scrabbling around in further research avenues, teachers and researchers can jointly use the potential of recording tools to create significant and practical assessment practices.

ACKNOWLEDGEMENT

I thank the participants in this research. I am grateful to the editors and anonymous reviewers for their helpful comments.

BIO-PROFILE:

Hieronimus Canggung Darong is an associate professor focused on literature and English language instruction. In 2020, Universitas Negeri Malang awarded him a doctorate in English language teaching. Throughout his career, he has held positions as an English instructor at Wearnes Education Center Malang (2001–2007). Now, he is an English lecturer at UNIKA
Santu Paulus Ruteng. Hieronimus has conducted studies in language assessment, English language teaching, and corpus studies of classroom talk.
REFERENCES

--

Volume 13 No 1, Februari 2024,
http://creativecommons.org/licenses/by/4.0
Darong (2024)

