Abdul Haris Rosyidi


Penelitian ini bertujuan untuk mendeskripsikan pemahaman mahasiswa terhadap analogi prosedur dalam menyelesaikan persamaan kuadrat dengan memfaktorkan akan dideskripsikan berdasar konsep pemahaman Skemp, pemahaman instrumental dan pemahaman relasional. Penelitian ini dilakukan terhadap 82 mahasiswa Prodi Pendidikan Matematika Universitas Negeri Surabaya. Instrumen penelitian berupa soal tes pemahaman dan wawancara. Data dianalisis menggunakan indikator pemahaman terhadap prosedur yang telah dipelajari, pemahaman terhadap prosedur baru, dan pemahaman terkait hubungan antara kedua prosedur tersebut. Hasil penelitian menunjukkan meski semua mahasiswa mampu menggunakan prosedur yang telah dipelajari tetapi hanya 15 (18,29%) mahasiswa yang memahami bahwa teorema yang mendasari prosedur tersebut. Ada 5 (6,10%) mahasiswa yang memahami prosedur baru, dan mampu menunjukkan aturan dibalik prosedur tersebut, tetapi hanya satu mahasiswa yang menemukan bentuk umum persamaan kuadrat yang dapat diselesaikan menggunakan prosedur baru sekaligus mampu mengembangkan prosedur baru yang analog lengkap dengan penjelasannya.


This research was conducted on 82 prospective teachers of Mathematics Education Study Program, Universitas Negeri Surabaya. Students' understanding of the analogy of procedures in solving quadratic equations by factoring will be described through concept of Skemp understanding, instrumental understanding and relational understanding. Indicators of these understanding are understanding of procedures that have been learned, understanding of new procedures, and understanding related to the relationship between the two procedures. The results showed that although all students were able to use the procedures learned, only 15 students (18.29%) realized that the procedure relied on the multiplication theorem of two numbers equal to zero. There were 5 students (6.10%) who understood the new procedure, and were able to show the rules behind the procedure, but only one student was able to find the general form of quadratic equations that could be solved using a new procedure while being able to develop new analogous procedures complete with an explanation


Analogi prosedur; pemahaman; persamaan kuadrat; Procedural analogy; quadratic equations; understanding


Anderson, L. W., & Krathwohl, D. R. (2010). Kerangka landasan untuk pembelajaran, pengajaran, dan asesmen. Yogyakarta: Pustaka Pelajar, 300(300), 0.

Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Council of Chief State School Officers.

Didiş, M. G., Baş, S., & Erbaş, A. (2011). Students’ reasoning in quadratic equations with one unknown. In The Seventh Congress of the European Society for Research in Mathematics Education (CERME-7) (pp. 479-489).

Fachrudin, A. D., & Putri, R. I. I. (2014). Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry. Indonesian Mathematical Society Journal on Mathematics Education, 5(2), 192-202.

Huang, J. S., & Kapur, M. (2015). Can “less” create “more” in analogical reasoning?. Learning: Research and Practice, 1(2), 133-151.

Lee, K. H., & Sriraman, B. (2011). Conjecturing via reconceived classical analogy. Educational studies in mathematics, 76(2), 123-140.

López, J., Robles, I., & Martínez-Planell, R. (2016). Students' understanding of quadratic equations. International Journal of Mathematical Education in Science and Technology, 47(4), 552-572.

Patkin, D., & Plaksin, O. (2019). Procedural and relational understanding of pre-service mathematics teachers regarding spatial perception of angles in pyramids. International Journal of Mathematical Education in Science and Technology, 50(1), 121-140.

Sahin, Z., Yenmez, A. A., & Erbas, A. K. (2015). Relational Understanding of the Derivative Concept through Mathematical Modeling: A Case Study. Eurasia Journal of Mathematics, Science & Technology Education, 11(1).

Sidney, P. G., & Alibali, M. W. (2015). Making connections in math: activating a prior knowledge analogue matters for learning. Journal of Cognition and Development, 16(1), 160-185.

Skemp, R. (1976). Instrumental understanding and relational understanding. Mathematics Teaching, 77, 20-26.

Sönnerhed, W. W. (2009). Alternative approaches of solving quadratic equations in

mathematics teaching: An empirical study of mathematics textbooks and teaching

material or Swedish Upper-secondary school. Retrieved April 5, 2010, from

Taylor, S. E., & Mittag, K. G. (2001). Seven wonders of the ancient and modern quadratic world. The Mathematics Teacher, 94(5), 349.

Van de Walle, John A. (2013) Elementary and middle school mathematics: teaching developmentally / John A. Van de Walle,Karen S. Karp; Jennifer M. Bay-Williams; with contributions by Jonathan Wray.—8th ed. New Jersey.

Vamvakoussi, X. (2017). Using analogies to facilitate conceptual change in mathematics learning. ZDM, 49(4), 497-507.

Vendetti, M. S., Matlen, B. J., Richland, L. E., & Bunge, S. A. (2015). Analogical reasoning in the classroom: Insights from cognitive science. Mind, Brain, and Education, 9(2), 100-106.

White, P., & Mitchelmore, M. (2010). Teaching for abstraction: A model. Mathematical Thinking and Learning, 12(3), 205–226.

Wilson, L. O. (2016). Anderson and Krathwohl–Bloom’s taxonomy revised. Understanding the New Version of Bloom's Taxonomy.

Yiǧit Koyunkaya, M. (2016). Mathematics education graduate students’ understanding of trigonometric ratios. International Journal of Mathematical Education in Science and Technology, 47(7), 1028-1047.



  • There are currently no refbacks.

Indexing by: